|
import pandas as pd |
|
import lightgbm as lgb |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import log_loss |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(["id", "target"], axis=1) |
|
y = train_data["target"].astype("category") |
|
X_test = test_data.drop(["id"], axis=1) |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = lgb.LGBMClassifier(objective="multiclass", random_state=42) |
|
model.fit(X_train, y_train) |
|
|
|
|
|
val_preds = model.predict_proba(X_val) |
|
print(f"Validation Log Loss: {log_loss(y_val, val_preds)}") |
|
|
|
|
|
test_preds = model.predict_proba(X_test) |
|
|
|
|
|
submission = pd.DataFrame( |
|
test_preds, columns=["Class_1", "Class_2", "Class_3", "Class_4"] |
|
) |
|
submission["id"] = test_data["id"] |
|
submission = submission[["id", "Class_1", "Class_2", "Class_3", "Class_4"]] |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|