|
import pandas as pd |
|
from sklearn.ensemble import RandomForestRegressor |
|
from sklearn.metrics import mean_absolute_error |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
train_data["time"] = pd.to_datetime(train_data["time"]) |
|
train_data["hour"] = train_data["time"].dt.hour |
|
train_data["weekday"] = train_data["time"].dt.weekday |
|
train_data["month"] = train_data["time"].dt.month |
|
|
|
test_data["time"] = pd.to_datetime(test_data["time"]) |
|
test_data["hour"] = test_data["time"].dt.hour |
|
test_data["weekday"] = test_data["time"].dt.weekday |
|
test_data["month"] = test_data["time"].dt.month |
|
|
|
|
|
X = train_data[["x", "y", "direction", "hour", "weekday", "month"]] |
|
X = pd.get_dummies(X, columns=["direction"], drop_first=True) |
|
y = train_data["congestion"] |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = RandomForestRegressor(n_estimators=100, random_state=42) |
|
model.fit(X_train, y_train) |
|
|
|
|
|
y_pred = model.predict(X_val) |
|
mae = mean_absolute_error(y_val, y_pred) |
|
print(f"Mean Absolute Error: {mae}") |
|
|
|
|
|
X_test = test_data[["x", "y", "direction", "hour", "weekday", "month"]] |
|
X_test = pd.get_dummies(X_test, columns=["direction"], drop_first=True) |
|
test_predictions = model.predict(X_test) |
|
|
|
|
|
submission = pd.DataFrame( |
|
{"row_id": test_data["row_id"], "congestion": test_predictions} |
|
) |
|
submission.to_csv("./working/submission.csv", index=False) |
|
|