dexay commited on
Commit
dd7da84
·
1 Parent(s): f3471bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -10,17 +10,16 @@ from transformers import pipeline, TokenClassificationPipeline, BertForTokenCla
10
 
11
  st.set_page_config(layout="wide")
12
 
13
- st.image("Logo_ESI.png",width = 400)
14
 
15
  st.title("Knowledge extraction: EDCs")
16
- st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
17
- st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
18
 
19
 
20
 
21
 
22
  form = st.form(key='my-form')
23
- x = form.text_area('Enter text', height=250)
24
  submit = form.form_submit_button('Submit')
25
 
26
 
@@ -29,7 +28,7 @@ submit = form.form_submit_button('Submit')
29
 
30
  if submit and len(x) != 0:
31
  #model.to("cpu")
32
- st.write("Execution in progress ... It may take a while, please be patient.")
33
 
34
  tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
35
  model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
 
10
 
11
  st.set_page_config(layout="wide")
12
 
13
+ st.image("Logo_ESI.png",width = 200)
14
 
15
  st.title("Knowledge extraction: EDCs")
16
+ st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers. It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
 
17
 
18
 
19
 
20
 
21
  form = st.form(key='my-form')
22
+ x = form.text_area('Enter text', height=200)
23
  submit = form.form_submit_button('Submit')
24
 
25
 
 
28
 
29
  if submit and len(x) != 0:
30
  #model.to("cpu")
31
+ st.write("Execution in progress... Results will be displayed below in a while or can be downloaded from the sidebar, please be patient.")
32
 
33
  tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
34
  model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )