Update app.py
Browse files
app.py
CHANGED
@@ -10,17 +10,16 @@ from transformers import pipeline, TokenClassificationPipeline, BertForTokenCla
|
|
10 |
|
11 |
st.set_page_config(layout="wide")
|
12 |
|
13 |
-
st.image("Logo_ESI.png",width =
|
14 |
|
15 |
st.title("Knowledge extraction: EDCs")
|
16 |
-
st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
|
17 |
-
st.write("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
form = st.form(key='my-form')
|
23 |
-
x = form.text_area('Enter text', height=
|
24 |
submit = form.form_submit_button('Submit')
|
25 |
|
26 |
|
@@ -29,7 +28,7 @@ submit = form.form_submit_button('Submit')
|
|
29 |
|
30 |
if submit and len(x) != 0:
|
31 |
#model.to("cpu")
|
32 |
-
st.write("Execution in progress
|
33 |
|
34 |
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
|
35 |
model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
|
|
|
10 |
|
11 |
st.set_page_config(layout="wide")
|
12 |
|
13 |
+
st.image("Logo_ESI.png",width = 200)
|
14 |
|
15 |
st.title("Knowledge extraction: EDCs")
|
16 |
+
st.write("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers. It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
|
|
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
form = st.form(key='my-form')
|
22 |
+
x = form.text_area('Enter text', height=200)
|
23 |
submit = form.form_submit_button('Submit')
|
24 |
|
25 |
|
|
|
28 |
|
29 |
if submit and len(x) != 0:
|
30 |
#model.to("cpu")
|
31 |
+
st.write("Execution in progress... Results will be displayed below in a while or can be downloaded from the sidebar, please be patient.")
|
32 |
|
33 |
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
|
34 |
model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
|