File size: 23,245 Bytes
f0fcc66
 
 
 
 
9e5447d
 
f0fcc66
 
 
6165359
 
f0fcc66
ed34aa3
 
 
 
f0fcc66
6165359
 
 
 
 
 
 
 
 
 
ed34aa3
 
 
6165359
 
 
 
 
 
f0fcc66
 
 
 
 
 
 
 
 
ff15687
f0fcc66
 
 
 
 
 
 
 
 
 
 
 
 
 
ff15687
 
f0fcc66
 
 
e70b261
f0fcc66
 
 
6165359
f0fcc66
 
 
 
 
 
 
 
 
 
 
 
ff15687
 
f0fcc66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff15687
 
f0fcc66
 
 
 
 
 
6165359
f0fcc66
 
 
 
 
ff15687
f0fcc66
 
ff15687
f0fcc66
ed34aa3
f0fcc66
ed34aa3
 
f0fcc66
ed34aa3
f0fcc66
ff15687
f0fcc66
 
 
6165359
f0fcc66
 
 
 
 
 
 
 
 
 
 
 
b64eca0
 
 
f0fcc66
 
 
 
 
 
 
 
 
 
 
 
b64eca0
f0fcc66
 
 
 
 
 
 
 
 
ff15687
f0fcc66
 
 
ff15687
f0fcc66
 
 
 
 
ff15687
f0fcc66
ed34aa3
f0fcc66
 
 
 
 
 
 
 
 
 
 
6165359
f0fcc66
6165359
f0fcc66
 
 
 
6165359
f0fcc66
 
 
 
 
 
9e5447d
 
 
 
 
6165359
ed34aa3
ff15687
9e5447d
 
 
 
 
ed34aa3
ff15687
9e5447d
 
 
 
 
 
 
 
 
 
 
 
ed34aa3
9e5447d
 
f0fcc66
6165359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff15687
6165359
fd31dbe
 
 
 
 
f0fcc66
 
6165359
 
 
ed34aa3
6165359
 
 
 
 
 
ff15687
6165359
 
 
 
 
 
 
ed34aa3
6165359
ed34aa3
6165359
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff15687
 
 
 
 
 
 
 
 
 
6165359
 
 
 
ed34aa3
 
6165359
 
ed34aa3
 
 
6165359
ff15687
 
 
 
 
 
 
6165359
ff15687
 
6165359
 
ed34aa3
6165359
ff15687
 
6165359
 
 
 
 
 
 
 
ed34aa3
ff15687
6165359
ff15687
 
6165359
 
ff15687
 
6165359
 
 
ff15687
 
6165359
 
ed34aa3
ff15687
ed34aa3
 
 
 
 
ff15687
ed34aa3
 
6165359
 
ed34aa3
ff15687
6165359
 
 
ff15687
6165359
 
 
 
 
 
 
ed34aa3
 
 
 
ff15687
 
ed34aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff15687
ed34aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6165359
 
 
 
 
 
 
 
ff15687
 
6165359
 
 
 
ff15687
 
6165359
 
ff15687
 
 
6165359
ff15687
 
6165359
 
ff15687
 
 
6165359
ff15687
 
6165359
 
 
 
ed34aa3
6165359
ed34aa3
6165359
ed34aa3
 
ff15687
 
ed34aa3
 
ff15687
ed34aa3
f0fcc66
 
9e5447d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import torch
import gradio as gr
from diffusers import FluxPipeline, FluxTransformer2DModel
import gc
import random
import glob
from pathlib import Path
from PIL import Image
import os
import time
import json
from fasteners import InterProcessLock
import spaces
from datasets import Dataset, Image as HFImage, load_dataset
from datasets import Features, Value
from datasets import concatenate_datasets
from datetime import datetime

AGG_FILE = Path(__file__).parent / "agg_stats.json"
LOCK_FILE = AGG_FILE.with_suffix(".lock")

def _load_agg_stats() -> dict:
    if AGG_FILE.exists():
        with open(AGG_FILE, "r") as f:
            try:
                return json.load(f)
            except json.JSONDecodeError:
                print(f"Warning: {AGG_FILE} is corrupted. Starting with empty stats.")
                return {"8-bit bnb": {"attempts": 0, "correct": 0}, "4-bit bnb": {"attempts": 0, "correct": 0}}
    return {"8-bit bnb": {"attempts": 0, "correct": 0},
            "4-bit bnb": {"attempts": 0, "correct": 0}}

def _save_agg_stats(stats: dict) -> None:
    with InterProcessLock(str(LOCK_FILE)):
        with open(AGG_FILE, "w") as f:
            json.dump(stats, f, indent=2)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")

DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
DEFAULT_GUIDANCE_SCALE = 3.5
DEFAULT_NUM_INFERENCE_STEPS = 15
DEFAULT_MAX_SEQUENCE_LENGTH = 512
HF_TOKEN = os.environ.get("HF_ACCESS_TOKEN")
HF_DATASET_REPO_ID = "diffusers/flux-quant-challenge-submissions"

CACHED_PIPES = {}
def load_bf16_pipeline():
    print("Loading BF16 pipeline...")
    MODEL_ID = "black-forest-labs/FLUX.1-dev"
    if MODEL_ID in CACHED_PIPES:
        return CACHED_PIPES[MODEL_ID]
    start_time = time.time()
    try:
        pipe = FluxPipeline.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.bfloat16,
                token=HF_TOKEN
        )
        # pipe.to(DEVICE)
        pipe.enable_model_cpu_offload()
        end_time = time.time()
        mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
        print(f"BF16 Pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
        CACHED_PIPES[MODEL_ID] = pipe
        return pipe
    except Exception as e:
        print(f"Error loading BF16 pipeline: {e}")
        raise

def load_bnb_8bit_pipeline():
    print("Loading 8-bit BNB pipeline...")
    MODEL_ID = "derekl35/FLUX.1-dev-bnb-8bit"
    if MODEL_ID in CACHED_PIPES:
        return CACHED_PIPES[MODEL_ID]
    start_time = time.time()
    try:
        pipe = FluxPipeline.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.bfloat16
        )
        # pipe.to(DEVICE)
        pipe.enable_model_cpu_offload()
        end_time = time.time()
        mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
        print(f"8-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
        CACHED_PIPES[MODEL_ID] = pipe
        return pipe
    except Exception as e:
        print(f"Error loading 8-bit BNB pipeline: {e}")
        raise

def load_bnb_4bit_pipeline():
    print("Loading 4-bit BNB pipeline...")
    MODEL_ID = "derekl35/FLUX.1-dev-nf4"
    if MODEL_ID in CACHED_PIPES:
        return CACHED_PIPES[MODEL_ID]
    start_time = time.time()
    try:
        pipe = FluxPipeline.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.bfloat16
        )
        # pipe.to(DEVICE)
        pipe.enable_model_cpu_offload()
        end_time = time.time()
        mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
        print(f"4-bit BNB pipeline loaded in {end_time - start_time:.2f}s. Memory reserved: {mem_reserved:.2f} GB")
        CACHED_PIPES[MODEL_ID] = pipe
        return pipe
    except Exception as e:
        print(f"Error loading 4-bit BNB pipeline: {e}")
        raise

@spaces.GPU(duration=240)
def generate_images(prompt, quantization_choice, progress=gr.Progress(track_tqdm=True)):
    if not prompt:
        return None, {}, gr.update(value="Please enter a prompt.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)

    if not quantization_choice:
        return None, {}, gr.update(value="Please select a quantization method.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)

    if quantization_choice == "8-bit bnb":
        quantized_load_func = load_bnb_8bit_pipeline
        quantized_label = "Quantized (8-bit bnb)"
    elif quantization_choice == "4-bit bnb":
        quantized_load_func = load_bnb_4bit_pipeline
        quantized_label = "Quantized (4-bit bnb)"
    else:
        return None, {}, gr.update(value="Invalid quantization choice.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)

    model_configs = [
        ("Original", load_bf16_pipeline),
        (quantized_label, quantized_load_func),
    ]

    results = []
    pipe_kwargs = {
        "prompt": prompt,
        "height": DEFAULT_HEIGHT,
        "width": DEFAULT_WIDTH,
        "guidance_scale": DEFAULT_GUIDANCE_SCALE,
        "num_inference_steps": DEFAULT_NUM_INFERENCE_STEPS,
        "max_sequence_length": DEFAULT_MAX_SEQUENCE_LENGTH,
    }

    seed = random.getrandbits(64)
    print(f"Using seed: {seed}")

    for i, (label, load_func) in enumerate(model_configs):
        progress(i / len(model_configs), desc=f"Loading {label} model...")
        print(f"\n--- Loading {label} Model ---")
        load_start_time = time.time()
        try:
            current_pipe = load_func()
            load_end_time = time.time()
            print(f"{label} model loaded in {load_end_time - load_start_time:.2f} seconds.")

            progress((i + 0.5) / len(model_configs), desc=f"Generating with {label} model...")
            print(f"--- Generating with {label} Model ---")
            gen_start_time = time.time()
            image_list = current_pipe(**pipe_kwargs, generator=torch.manual_seed(seed)).images
            image = image_list[0]
            gen_end_time = time.time()
            results.append({"label": label, "image": image})
            print(f"--- Finished Generation with {label} Model in {gen_end_time - gen_start_time:.2f} seconds ---")
            mem_reserved = torch.cuda.memory_reserved(0)/1024**3 if DEVICE == "cuda" else 0
            print(f"Memory reserved: {mem_reserved:.2f} GB")

        except Exception as e:
            print(f"Error during {label} model processing: {e}")
            return None, {}, gr.update(value=f"Error processing {label} model: {e}", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)


    if len(results) != len(model_configs):
        return None, {}, gr.update(value="Failed to generate images for all model types.", interactive=False), None, [], gr.update(interactive=True), gr.update(interactive=True)

    shuffled_results = results.copy()
    random.shuffle(shuffled_results)
    shuffled_data_for_gallery = [(res["image"], f"Image {i+1}") for i, res in enumerate(shuffled_results)]
    correct_mapping = {i: res["label"] for i, res in enumerate(shuffled_results)}
    print("Correct mapping (hidden):", correct_mapping)

    return shuffled_data_for_gallery, correct_mapping, prompt, seed, results, "Generation complete! Make your guess.", None, gr.update(interactive=True), gr.update(interactive=True)


def check_guess(user_guess, correct_mapping_state):
    if not isinstance(correct_mapping_state, dict) or not correct_mapping_state:
        return "Please generate images first (state is empty or invalid)."
    if user_guess is None:
        return "Please select which image you think is quantized."

    quantized_image_index = -1
    quantized_label_actual = ""
    for index, label in correct_mapping_state.items():
        if "Quantized" in label:
            quantized_image_index = index
            quantized_label_actual = label
            break
    if quantized_image_index == -1:
        return "Error: Could not find the quantized image in the mapping data."

    correct_guess_label = f"Image {quantized_image_index + 1}"
    if user_guess == correct_guess_label:
        feedback = f"Correct! {correct_guess_label} used the {quantized_label_actual} model."
    else:
        feedback = f"Incorrect. The quantized image ({quantized_label_actual}) was {correct_guess_label}."
    return feedback

EXAMPLE_DIR = Path(__file__).parent / "examples"
EXAMPLES = [
    {
        "prompt": "A photorealistic portrait of an astronaut on Mars",
        "files": ["astronauts_seed_6456306350371904162.png", "astronauts_bnb_8bit.png"],
        "quantized_idx": 1,
        "quant_method": "8-bit bnb",
        "summary": "Astronaut on Mars",
    },
    {
        "prompt": "Water-color painting of a cat wearing sunglasses",
        "files": ["watercolor_cat_bnb_8bit.png", "watercolor_cat_seed_14269059182221286790.png"],
        "quantized_idx": 0,
        "quant_method": "8-bit bnb",
        "summary": "Cat with Sunglasses",
    },
    # {
    #     "prompt": "Neo-tokyo cyberpunk cityscape at night, rain-soaked streets, 8-K",
    #     "files": ["cyber_city_q.jpg", "cyber_city.jpg"],
    #     "quantized_idx": 0,
    # },
]

def load_example(idx):
    ex = EXAMPLES[idx]
    imgs = [Image.open(EXAMPLE_DIR / f) for f in ex["files"]]
    gallery_items = [(img, f"Image {i+1}") for i, img in enumerate(imgs)]
    mapping = {i: (f"Quantized ({ex['quant_method']})" if i == ex["quantized_idx"] else "Original")
               for i in range(2)}
    return gallery_items, mapping, f"{ex['prompt']}"

def _accuracy_string(correct: int, attempts: int) -> tuple[str, float]:
    if attempts:
        pct = 100 * correct / attempts
        return f"{pct:.1f}%", pct
    return "N/A", -1.0

def update_leaderboards_data():
    agg = _load_agg_stats()
    quant_rows = []
    for method, stats in agg.items():
        acc_str, acc_val = _accuracy_string(stats["correct"], stats["attempts"])
        quant_rows.append([
            method,
            stats["correct"],
            stats["attempts"],
            acc_str
        ])
    quant_rows.sort(key=lambda r: r[1]/r[2] if r[2] != 0 else 1e9)
    return quant_rows

quant_df = gr.DataFrame(
    headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
    interactive=False, col_count=(4, "fixed")
)

with gr.Blocks(title="FLUX Quantization Challenge", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# FLUX Model Quantization Challenge")
    with gr.Tabs():
        with gr.TabItem("Challenge"):
            gr.Markdown(
                "Compare the original FLUX.1-dev (BF16) model against a quantized version (4-bit or 8-bit bnb). "
                "Enter a prompt, choose the quantization method, and generate two images. "
                "The images will be shuffled, can you spot which one was quantized?"
            )

            gr.Markdown("### Examples")
            ex_selector = gr.Radio(
                choices=[ex["summary"] for ex in EXAMPLES],
                label="Choose an example prompt",
                interactive=True,
            )
            gr.Markdown("### …or create your own comparison")
            with gr.Row():
                prompt_input = gr.Textbox(label="Enter Prompt", scale=3)
                quantization_choice_radio = gr.Radio(
                    choices=["8-bit bnb", "4-bit bnb"],
                    label="Select Quantization",
                    value="8-bit bnb",
                    scale=1
                )
                generate_button = gr.Button("Generate & Compare", variant="primary", scale=1)

            output_gallery = gr.Gallery(
                label="Generated Images",
                columns=2,
                height=606,
                object_fit="contain",
                allow_preview=True,
                show_label=True,
            )

            gr.Markdown("### Which image used the selected quantization method?")
            with gr.Row():
                image1_btn = gr.Button("Image 1")
                image2_btn = gr.Button("Image 2")

            feedback_box = gr.Textbox(label="Feedback", interactive=False, lines=1)

            with gr.Row():
                session_score_box  = gr.Textbox(label="Your accuracy this session", interactive=False)
            
            gr.Markdown("""
            ### Dataset Information
            Unless you opt out below, your submissions will be recorded in a dataset. This dataset contains anonymized challenge results including prompts, images, quantization methods, 
            and whether guesses were correct.
            """)
            
            opt_out_checkbox = gr.Checkbox(
                label="Opt out of data collection (don't record my submissions to the dataset)", 
                value=False
            )

            correct_mapping_state = gr.State({})
            session_stats_state = gr.State(
                {"8-bit bnb": {"attempts": 0, "correct": 0},
                "4-bit bnb": {"attempts": 0, "correct": 0}}
            )
            is_example_state = gr.State(False)
            prompt_state = gr.State("")
            seed_state = gr.State(None)
            results_state = gr.State([])

            def _load_example_and_update_dfs(sel_summary):
                idx = next((i for i, ex in enumerate(EXAMPLES) if ex["summary"] == sel_summary), -1)
                if idx == -1:
                    print(f"Error: Example with summary '{sel_summary}' not found.")
                    return (gr.update(), gr.update(), gr.update(), False, gr.update(), "", None, [])

                ex = EXAMPLES[idx]
                gallery_items, mapping, prompt = load_example(idx)
                quant_data = update_leaderboards_data()
                return gallery_items, mapping, prompt, True, quant_data, "", None, []

            ex_selector.change(
                fn=_load_example_and_update_dfs,
                inputs=ex_selector,
                outputs=[output_gallery, correct_mapping_state, prompt_input, is_example_state, quant_df,
                         prompt_state, seed_state, results_state],
            ).then(
                lambda: (gr.update(interactive=True), gr.update(interactive=True)),
                outputs=[image1_btn, image2_btn],
            )

            generate_button.click(
                fn=generate_images,
                inputs=[prompt_input, quantization_choice_radio],
                outputs=[output_gallery, correct_mapping_state, prompt_state, seed_state, results_state,
                         feedback_box]
            ).then(
                lambda: False, # for is_example_state
                outputs=[is_example_state]
            ).then(
                lambda: (gr.update(interactive=True),
                         gr.update(interactive=True),
                         ""),
                outputs=[image1_btn, image2_btn, feedback_box],
            )

            def choose(choice_string, mapping, session_stats, is_example,
                       prompt, seed, results, opt_out):
                feedback = check_guess(choice_string, mapping)

                if not mapping:
                    return feedback, gr.update(), gr.update(), "", session_stats, gr.update()

                quant_label_from_mapping = next((label for label in mapping.values() if "Quantized" in label), None)
                if not quant_label_from_mapping:
                    print("Error: Could not determine quantization label from mapping:", mapping)
                    return ("Internal Error: Could not process results.", gr.update(interactive=False), gr.update(interactive=False),
                            "", session_stats, gr.update())

                quant_key = "8-bit bnb" if "8-bit bnb" in quant_label_from_mapping else "4-bit bnb"
                got_it_right = "Correct!" in feedback
                sess = session_stats.copy()

                if not is_example: # Only log and update stats if it's not an example run
                    sess[quant_key]["attempts"] += 1
                    if got_it_right:
                        sess[quant_key]["correct"] += 1
                    session_stats = sess # Update the state for the UI

                    AGG_STATS = _load_agg_stats()
                    AGG_STATS[quant_key]["attempts"] += 1
                    if got_it_right:
                        AGG_STATS[quant_key]["correct"] += 1
                    _save_agg_stats(AGG_STATS)

                    if not HF_TOKEN:
                        print("Warning: HF_TOKEN not set. Skipping dataset logging.")
                    elif not results:
                        print("Warning: Results state is empty. Skipping dataset logging.")
                    elif opt_out:
                        print("User opted out of dataset logging. Skipping.")
                    else:
                        print(f"Logging guess to HF Dataset: {HF_DATASET_REPO_ID}")
                        original_image = None
                        quantized_image = None
                        quantized_image_pos = -1

                        for shuffled_idx, original_label in mapping.items():
                            if "Quantized" in original_label:
                                quantized_image_pos = shuffled_idx
                                break

                        original_image = next((res["image"] for res in results if "Original" in res["label"]), None)
                        quantized_image = next((res["image"] for res in results if "Quantized" in res["label"]), None)

                        if original_image and quantized_image:
                            expected_features = Features({
                                "timestamp": Value("string"),
                                "prompt": Value("string"),
                                "quantization_method": Value("string"),
                                "seed": Value("string"),
                                "image_original": HFImage(),
                                "image_quantized": HFImage(),
                                "quantized_image_displayed_position": Value("string"),
                                "user_guess_displayed_position": Value("string"),
                                "correct_guess": Value("bool"),
                                "username": Value("string"), # Handles None
                            })

                            new_data_dict_of_lists = {
                                "timestamp": [datetime.now().isoformat()],
                                "prompt": [prompt],
                                "quantization_method": [quant_key],
                                "seed": [str(seed)],
                                "image_original": [original_image],
                                "image_quantized": [quantized_image],
                                "quantized_image_displayed_position": [f"Image {quantized_image_pos + 1}"],
                                "user_guess_displayed_position": [choice_string],
                                "correct_guess": [got_it_right],
                                "username": [None], # Log None for username
                            }
                            try:
                                existing_ds = load_dataset(
                                    HF_DATASET_REPO_ID,
                                    split="train",
                                    token=HF_TOKEN,
                                    features=expected_features,
                                )
                                new_row_ds = Dataset.from_dict(new_data_dict_of_lists, features=expected_features)
                                combined_ds = concatenate_datasets([existing_ds, new_row_ds])
                                combined_ds.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train")
                                print(f"Successfully appended guess to {HF_DATASET_REPO_ID} (train split)")
                            except Exception as e:
                                print(f"Could not load or append to existing dataset/split. Creating 'train' split with the new item. Error: {e}")
                                ds_new = Dataset.from_dict(new_data_dict_of_lists, features=expected_features)
                                ds_new.push_to_hub(HF_DATASET_REPO_ID, token=HF_TOKEN, split="train")
                                print(f"Successfully created and logged new 'train' split to {HF_DATASET_REPO_ID}")
                        else:
                            print("Error: Could not find original or quantized image in results state for logging.")

                def _fmt(d):
                    a, c = d["attempts"], d["correct"]
                    pct = 100 * c / a if a else 0
                    return f"{c} / {a}  ({pct:.1f}%)"

                session_msg = ", ".join(
                    f"{k}: {_fmt(v)}" for k, v in sess.items()
                )
                
                quant_data = update_leaderboards_data()
                return (feedback,
                        gr.update(interactive=False),
                        gr.update(interactive=False),
                        session_msg,
                        session_stats, # Return the potentially updated session_stats
                        quant_data)

            image1_btn.click(
                fn=lambda mapping, sess, is_ex, p, s, r, opt_out: choose("Image 1", mapping, sess, is_ex, p, s, r, opt_out),
                inputs=[correct_mapping_state, session_stats_state, is_example_state,
                        prompt_state, seed_state, results_state, opt_out_checkbox],
                outputs=[feedback_box, image1_btn, image2_btn,
                         session_score_box, session_stats_state,
                         quant_df],
            )
            image2_btn.click(
                fn=lambda mapping, sess, is_ex, p, s, r, opt_out: choose("Image 2", mapping, sess, is_ex, p, s, r, opt_out),
                inputs=[correct_mapping_state, session_stats_state, is_example_state,
                        prompt_state, seed_state, results_state, opt_out_checkbox],
                outputs=[feedback_box, image1_btn, image2_btn,
                         session_score_box, session_stats_state,
                         quant_df],
            )

        with gr.TabItem("Leaderboard"):
            gr.Markdown("## Quantization Method Leaderboard  *(Lower % ⇒ harder to detect)*")
            leaderboard_tab_quant_df = gr.DataFrame(
                headers=["Method", "Correct Guesses", "Total Attempts", "Detectability %"],
                interactive=False, col_count=(4, "fixed"), label="Quantization Method Leaderboard"
            )

            def update_all_leaderboards_for_tab():
                q_rows = update_leaderboards_data()
                return q_rows # Only return quantization method data

            demo.load(update_all_leaderboards_for_tab, outputs=[
                leaderboard_tab_quant_df,
            ])

if __name__ == "__main__":
    demo.launch(share=True)