File size: 11,139 Bytes
46556af
 
 
 
 
 
 
870fca9
46556af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2f6f3
46556af
5f2f6f3
 
46556af
 
 
9f08bc7
46556af
 
 
9f08bc7
46556af
 
 
 
 
5f2f6f3
46556af
 
 
870fca9
46556af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2f6f3
 
46556af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f2f6f3
46556af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec4619
 
46556af
 
 
 
 
 
 
 
 
 
 
 
d9dd6bb
46556af
 
 
 
 
 
 
 
d9dd6bb
46556af
 
4fb4773
 
46556af
 
 
5f2f6f3
46556af
 
870fca9
 
46556af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import cv2
import tqdm
import uuid
import logging

import torch
import spaces
import trackers
import numpy as np
import gradio as gr
import imageio.v3 as iio
import supervision as sv

from pathlib import Path
from functools import lru_cache
from typing import List, Optional, Tuple

from transformers import AutoModelForObjectDetection, AutoImageProcessor

# Configuration constants
CHECKPOINTS = [
    "ustc-community/dfine-xlarge-obj2coco"
]
DEFAULT_CHECKPOINT = CHECKPOINTS[0]
DEFAULT_CONFIDENCE_THRESHOLD = 0.3

TORCH_DTYPE = torch.float32

# Video
MAX_NUM_FRAMES = 250
BATCH_SIZE = 4
ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"}
VIDEO_OUTPUT_DIR = Path("static/videos")
VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)


class TrackingAlgorithm:
    BYTETRACK = "ByteTrack (2021)"
    DEEPSORT = "DeepSORT (2017)"
    SORT = "SORT (2016)"


# Create a color palette for visualization
# These hex color codes define different colors for tracking different objects
color = sv.ColorPalette.from_hex([
    "#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
    "#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
])

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


@lru_cache(maxsize=3)
def get_model_and_processor(checkpoint: str):
    model = AutoModelForObjectDetection.from_pretrained(checkpoint, torch_dtype=TORCH_DTYPE)
    image_processor = AutoImageProcessor.from_pretrained(checkpoint)
    return model, image_processor


@spaces.GPU(duration=20)
def detect_objects(
        images: List[np.ndarray] | np.ndarray,
        target_size: Optional[Tuple[int, int]] = None,
        batch_size: int = BATCH_SIZE
):
    checkpoint = "ustc-community/dfine-xlarge-obj2coco"
    confidence_threshold = 0.3
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model, image_processor = get_model_and_processor(checkpoint)
    model = model.to(device)
    classes = ["person","aeroplane","bicycle","car","motorbike","bus","train","truck","boat"]
    if classes is not None:
        wrong_classes = [cls for cls in classes if cls not in model.config.label2id]
        if wrong_classes:
            gr.Warning(f"Classes not found in model config")
        keep_ids = [model.config.label2id[cls] for cls in classes if cls in model.config.label2id]
    else:
        keep_ids = None

    if isinstance(images, np.ndarray) and images.ndim == 4:
        images = [x for x in images]

    batches = [images[i:i + batch_size] for i in range(0, len(images), batch_size)]

    results = []
    for batch in tqdm.tqdm(batches, desc="Processing frames"):

        # preprocess images
        inputs = image_processor(images=batch, return_tensors="pt")
        inputs = inputs.to(device).to(TORCH_DTYPE)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # postprocess outputs
        if target_size:
            target_sizes = [target_size] * len(batch)
        else:
            target_sizes = [(image.shape[0], image.shape[1]) for image in batch]

        batch_results = image_processor.post_process_object_detection(
            outputs, target_sizes=target_sizes, threshold=confidence_threshold
        )

        results.extend(batch_results)

    # move results to cpu
    for i, result in enumerate(results):
        results[i] = {k: v.cpu() for k, v in result.items()}
        if keep_ids is not None:
            keep = torch.isin(results[i]["labels"], torch.tensor(keep_ids))
            results[i] = {k: v[keep] for k, v in results[i].items()}

    return results, model.config.id2label


def get_target_size(image_height, image_width, max_size: int):
    if image_height < max_size and image_width < max_size:
        new_height, new_width = image_height, image_width
    elif image_height > image_width:
        new_height = max_size
        new_width = int(image_width * max_size / image_height)
    else:
        new_width = max_size
        new_height = int(image_height * max_size / image_width)

    # make even (for video codec compatibility)
    new_height = new_height // 2 * 2
    new_width = new_width // 2 * 2

    return new_width, new_height


def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1):
    cap = cv2.VideoCapture(video_path)
    frames = []
    i = 0
    progress_bar = tqdm.tqdm(total=k, desc="Reading frames")
    while cap.isOpened() and len(frames) < k:
        ret, frame = cap.read()
        if not ret:
            break
        if i % read_every_i_frame == 0:
            frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            progress_bar.update(1)
        i += 1
    cap.release()
    progress_bar.close()
    return frames


def get_tracker(fps: float):
    tracker = TrackingAlgorithm.BYTETRACK
    if tracker == TrackingAlgorithm.SORT:
        return trackers.SORTTracker(frame_rate=fps)
    elif tracker == TrackingAlgorithm.DEEPSORT:
        feature_extractor = trackers.DeepSORTFeatureExtractor.from_timm("mobilenetv4_conv_small.e1200_r224_in1k",
                                                                        device="cpu")
        return trackers.DeepSORTTracker(feature_extractor, frame_rate=fps)
    elif tracker == TrackingAlgorithm.BYTETRACK:
        return sv.ByteTrack(frame_rate=int(fps))
    else:
        raise ValueError(f"Invalid tracker: {tracker}")


def update_tracker(tracker, detections, frame):
    tracker_name = tracker.__class__.__name__
    if tracker_name == "SORTTracker":
        return tracker.update(detections)
    elif tracker_name == "DeepSORTTracker":
        return tracker.update(detections, frame)
    elif tracker_name == "ByteTrack":
        return tracker.update_with_detections(detections)
    else:
        raise ValueError(f"Invalid tracker: {tracker}")


def process_video(
        video_path: str,
        tracker_algorithm: Optional[str] = None,
        progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> str:
    if not video_path or not os.path.isfile(video_path):
        raise ValueError(f"Invalid video path: {video_path}")

    ext = os.path.splitext(video_path)[1].lower()
    if ext not in ALLOWED_VIDEO_EXTENSIONS:
        raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}")

    video_info = sv.VideoInfo.from_video_path(video_path)
    read_each_i_frame = max(1, video_info.fps // 25)
    target_fps = video_info.fps / read_each_i_frame
    target_width, target_height = get_target_size(video_info.height, video_info.width, 1080)

    n_frames_to_read = min(MAX_NUM_FRAMES, video_info.total_frames // read_each_i_frame)
    frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame)
    frames = [cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_CUBIC) for frame in frames]

    # Set the color lookup mode to assign colors by track ID
    # This mean objects with the same track ID will be annotated by the same color
    color_lookup = sv.ColorLookup.TRACK if tracker_algorithm else sv.ColorLookup.CLASS

    box_annotator = sv.BoxAnnotator(color, color_lookup=color_lookup, thickness=1)
    label_annotator = sv.LabelAnnotator(color, color_lookup=color_lookup, text_scale=0.5)
    trace_annotator = sv.TraceAnnotator(color, color_lookup=color_lookup, thickness=1, trace_length=100)


    results, id2label = detect_objects(
        images=np.array(frames),
        target_size=(target_height, target_width),
    )

    annotated_frames = []

    # detections
    if tracker_algorithm:
        tracker = get_tracker(tracker_algorithm, target_fps)
        for frame, result in progress.tqdm(zip(frames, results), desc="Tracking objects", total=len(frames)):
            detections = sv.Detections.from_transformers(result, id2label=id2label)
            detections = detections.with_nms(threshold=0.95, class_agnostic=True)
            detections = update_tracker(tracker, detections, frame)
            labels = [f"#{tracker_id} {id2label[class_id]}" for class_id, tracker_id in
                      zip(detections.class_id, detections.tracker_id)]
            annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
            annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
            annotated_frame = trace_annotator.annotate(scene=annotated_frame, detections=detections)
            annotated_frames.append(annotated_frame)

    else:
        for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)):
            detections = sv.Detections.from_transformers(result, id2label=id2label)
            detections = detections.with_nms(threshold=0.95, class_agnostic=True)
            annotated_frame = box_annotator.annotate(scene=frame, detections=detections)
            annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections)
            annotated_frames.append(annotated_frame)

    output_filename = os.path.join(VIDEO_OUTPUT_DIR, f"output_{uuid.uuid4()}.mp4")
    iio.imwrite(output_filename, annotated_frames, fps=target_fps, codec="h264")
    return output_filename


def create_video_inputs() -> List[gr.components.Component]:
    return [
        gr.Video(
            label="Upload Video",
            sources=["upload"],
            interactive=True,
            format="mp4",  # Ensure MP4 format
            elem_classes="input-component",
        )
    ]


def create_button_row() -> List[gr.Button]:
    return [
        gr.Button(
            f"Detect Objects", variant="primary", elem_classes="action-button"
        ),
        gr.Button(f"Clear", variant="secondary", elem_classes="action-button"),
    ]


# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # Vehicle & People Detection Demo
        ## Input your video and see the detected!
        """,
        elem_classes="header-text",
    )

    with gr.Tabs():
        with gr.Tab("Video"):
            gr.Markdown(
                f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)."
            )
            with gr.Row():
                with gr.Column(scale=1, min_width=300):
                    with gr.Group():
                        video_input = create_video_inputs()[0]
                        video_detect_button, video_clear_button = create_button_row()
                with gr.Column(scale=2):
                    video_output = gr.Video(
                        label="Detection Results",
                        format="mp4",  # Explicit MP4 format
                        elem_classes="output-component",
                    )
    video_clear_button.click(
        fn=lambda: (None,None),
        outputs=[
            video_input,
            video_output
        ]
    )
    video_detect_button.click(
        fn=process_video,
        inputs=[video_input],
        outputs=[video_output],
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()