File size: 9,891 Bytes
def2fd8 3408cd5 9d31e57 3408cd5 def2fd8 3994a93 def2fd8 9d31e57 def2fd8 3408cd5 def2fd8 25e816c c62efeb 25e816c c62efeb 25e816c c62efeb 25e816c 3408cd5 25e816c 3408cd5 25e816c 3408cd5 c62efeb 3408cd5 9d31e57 25e816c 9d31e57 3408cd5 def2fd8 3408cd5 def2fd8 3408cd5 231faea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import json
from pathlib import Path
import gradio as gr
import torch
import spaces
from uno.flux.pipeline import UNOPipeline
def get_examples(examples_dir: str = "assets/examples") -> list:
examples = Path(examples_dir)
ans = []
for example in examples.iterdir():
if not example.is_dir():
continue
with open(example / "config.json") as f:
example_dict = json.load(f)
example_list = []
example_list.append(example_dict["useage"]) # case for
example_list.append(example_dict["prompt"]) # prompt
for key in ["image_ref1", "image_ref2", "image_ref3", "image_ref4"]:
if key in example_dict:
example_list.append(str(example / example_dict[key]))
else:
example_list.append(None)
example_list.append(example_dict["seed"])
ans.append(example_list)
return ans
def create_demo(
model_type: str,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
):
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate)
# 自定义CSS样式
css = """
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
background: linear-gradient(to right, #4776E6, #8E54E9);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-weight: 700;
padding: 1rem 0;
}
.container {
border-radius: 12px;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
padding: 20px;
background: white;
margin-bottom: 1.5rem;
}
.input-container {
background: rgba(245, 247, 250, 0.7);
border-radius: 10px;
padding: 1rem;
margin-bottom: 1rem;
}
.image-grid {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
gap: 10px;
}
.generate-btn {
background: linear-gradient(90deg, #4776E6, #8E54E9);
border: none;
color: white;
padding: 10px 20px;
border-radius: 50px;
font-weight: 600;
box-shadow: 0 4px 10px rgba(0,0,0,0.1);
transition: all 0.3s ease;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 6px 15px rgba(0,0,0,0.15);
}
.badge-container {
display: flex;
justify-content: center;
align-items: center;
gap: 8px;
flex-wrap: wrap;
margin-bottom: 1rem;
}
.badge {
display: inline-block;
padding: 0.25rem 0.75rem;
font-size: 0.875rem;
font-weight: 500;
line-height: 1.5;
text-align: center;
white-space: nowrap;
vertical-align: middle;
border-radius: 30px;
color: white;
background: #6c5ce7;
text-decoration: none;
}
.output-container {
background: rgba(243, 244, 246, 0.7);
border-radius: 10px;
padding: 1.5rem;
}
.slider-container label {
font-weight: 600;
margin-bottom: 0.5rem;
color: #4a5568;
}
"""
badges_text = r"""
<div class="badge-container">
<a href="https://github.com/bytedance/UNO" class="badge" style="background: #24292e;"><img alt="GitHub Stars" src="https://img.shields.io/github/stars/bytedance/UNO" style="vertical-align: middle;"></a>
<a href="https://bytedance.github.io/UNO/" class="badge" style="background: #f1c40f; color: #333;"><img alt="Project Page" src="https://img.shields.io/badge/Project%20Page-UNO-yellow" style="vertical-align: middle;"></a>
<a href="https://arxiv.org/abs/2504.02160" class="badge" style="background: #b31b1b;"><img alt="arXiv" src="https://img.shields.io/badge/arXiv%20paper-UNO-b31b1b.svg" style="vertical-align: middle;"></a>
<a href="https://huggingface.co/bytedance-research/UNO" class="badge" style="background: #FF9D00;"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange" style="vertical-align: middle;"></a>
<a href="https://huggingface.co/spaces/bytedance-research/UNO-FLUX" class="badge" style="background: #FF9D00;"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=demo&color=orange" style="vertical-align: middle;"></a>
</div>
""".strip()
with gr.Blocks(css=css) as demo:
gr.Markdown("# <div class='main-header'>UNO-FLUX Image Generator</div>")
gr.Markdown(badges_text)
with gr.Row():
with gr.Column(scale=3):
with gr.Box(elem_classes="container"):
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate...",
value="handsome woman in the city",
elem_classes="input-container"
)
gr.Markdown("### Reference Images")
with gr.Row(elem_classes="image-grid"):
image_prompt1 = gr.Image(label="Ref Img 1", visible=True, interactive=True, type="pil")
image_prompt2 = gr.Image(label="Ref Img 2", visible=True, interactive=True, type="pil")
image_prompt3 = gr.Image(label="Ref Img 3", visible=True, interactive=True, type="pil")
image_prompt4 = gr.Image(label="Ref Img 4", visible=True, interactive=True, type="pil")
with gr.Row():
with gr.Column(scale=2):
with gr.Box(elem_classes="slider-container"):
width = gr.Slider(512, 2048, 512, step=16, label="Generation Width")
height = gr.Slider(512, 2048, 512, step=16, label="Generation Height")
with gr.Column(scale=1):
gr.Markdown("<div style='background: #f8f9fa; padding: 10px; border-radius: 8px; border-left: 4px solid #4776E6;'>📌 The model was trained on 512x512 resolution.<br>Sizes closer to 512 are more stable, higher sizes give better visual effects but are less stable.</div>")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
with gr.Column():
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
with gr.Column():
seed = gr.Number(-1, label="Seed (-1 for random)")
generate_btn = gr.Button("Generate", elem_classes="generate-btn")
with gr.Column(scale=2):
with gr.Box(elem_classes="output-container"):
gr.Markdown("### Generated Result")
output_image = gr.Image(label="Generated Image")
download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)
inputs = [
prompt, width, height, guidance, num_steps,
seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4
]
generate_btn.click(
fn=pipeline.gradio_generate,
inputs=inputs,
outputs=[output_image, download_btn],
)
example_text = gr.Text("", visible=False, label="Case For:")
examples = get_examples("./assets/examples")
with gr.Box(elem_classes="container"):
gr.Markdown("### <div style='text-align: center; margin-bottom: 1rem;'>Examples</div>")
gr.Examples(
examples=examples,
inputs=[
example_text, prompt,
image_prompt1, image_prompt2, image_prompt3, image_prompt4,
seed, output_image
],
)
return demo
if __name__ == "__main__":
from typing import Literal
from transformers import HfArgumentParser
@dataclasses.dataclass
class AppArgs:
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
offload: bool = dataclasses.field(
default=False,
metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
)
port: int = 7860
parser = HfArgumentParser([AppArgs])
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
args = args_tuple[0]
demo = create_demo(args.name, args.device, args.offload)
demo.launch(server_port=args.port, ssr_mode=False)
|