deepakkumar07 commited on
Commit
86e7cd1
·
verified ·
1 Parent(s): abce46e

Uploading food not food text classifier demo app.py

Browse files
Files changed (4) hide show
  1. .gitignore +1 -0
  2. README.md +48 -10
  3. app.py +18 -0
  4. requirements.txt +3 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ script.py
README.md CHANGED
@@ -1,12 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: Whisper Small Tamil Demo
3
- emoji: 😻
4
- colorFrom: gray
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.20.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
1
+ # Whisper Small Tamil - Hugging Face Demo
2
+
3
+ This repository hosts a demo for the **Whisper Small Tamil** model, fine-tuned for Tamil speech recognition. This model is based on OpenAI's Whisper-Small and has been trained to improve Automatic Speech Recognition (ASR) for Tamil language inputs.
4
+
5
+ ## 🚀 Demo
6
+ Try the model directly on [🤗 Hugging Face Spaces](https://huggingface.co/spaces/deepakkumar07/whisper-small-tamil).
7
+
8
+ ## 📝 Model Details
9
+ - **Base Model:** OpenAI Whisper-Small
10
+ - **Fine-tuned for:** Tamil ASR
11
+ - **Dataset Used:** Common Voice Tamil & other curated datasets
12
+ - **Supports:** Tamil speech-to-text transcription
13
+
14
+ ## 🔧 How to Use
15
+ You can use this model in Python with the `transformers` library:
16
+
17
+ ```python
18
+ from transformers import pipeline
19
+
20
+ # Load model from Hugging Face Hub
21
+ asr_pipeline = pipeline("automatic-speech-recognition", model="deepakkumar07/whisper-small-tamil")
22
+
23
+ # Transcribe an audio file
24
+ result = asr_pipeline("path/to/audio.wav")
25
+ print(result["text"])
26
+ ```
27
+
28
+ ## 📊 Performance
29
+ This model is optimized for Tamil speech but may still have minor errors in transcription, especially with noisy audio or mixed-language inputs. Contributions and improvements are welcome!
30
+
31
+ ## 📌 Training Details
32
+ - Fine-tuned using the **Hugging Face Transformers** and **datasets** libraries.
33
+ - Trained on GPUs for better performance.
34
+ - Supports **streaming inference** for real-time transcription.
35
+
36
+ ## 💡 Applications
37
+ - Tamil voice-to-text conversion
38
+ - Subtitling and transcription services
39
+ - Voice-controlled Tamil applications
40
+
41
+ ## 🤝 Contributing
42
+ If you find any issues or want to improve the model, feel free to open a PR or reach out!
43
+
44
+ ## 📜 License
45
+ This model is released under an open license. Please refer to OpenAI's original Whisper license for base model terms.
46
+
47
  ---
 
 
 
 
 
 
 
 
 
48
 
49
+ For more details, check out the [Hugging Face model page](https://huggingface.co/deepakkumar07/whisper-small-tamil). 🚀
50
+
app.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+ import gradio as gr
3
+
4
+ pipe = pipeline(model="deepakkumar07/whisper-small-tamil") # change to "your-username/the-name-you-picked"
5
+
6
+ def transcribe(audio):
7
+ text = pipe(audio)["text"]
8
+ return text
9
+
10
+ iface = gr.Interface(
11
+ fn=transcribe,
12
+ inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
13
+ outputs="text",
14
+ title="Whisper Small Tamil",
15
+ description="Realtime demo for Tamil speech recognition using a fine-tuned Whisper small model.",
16
+ )
17
+ if __name__ == "__main__":
18
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ torch
3
+ transformers