Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,20 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
from arch import SegFormerUNet
|
7 |
from albumentations import Compose, Resize, Normalize
|
8 |
from albumentations.pytorch import ToTensorV2
|
9 |
|
|
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
model = SegFormerUNet().to(device)
|
12 |
-
|
13 |
-
checkpoint = torch.load(checkpoint_path, map_location=device)
|
14 |
model.load_state_dict(checkpoint)
|
15 |
model.eval()
|
16 |
-
print("Model weights loaded successfully!")
|
17 |
|
18 |
-
#
|
19 |
transform = Compose([
|
20 |
Resize(256, 256),
|
21 |
Normalize(mean=[0.5], std=[0.5]),
|
@@ -23,26 +22,23 @@ transform = Compose([
|
|
23 |
])
|
24 |
|
25 |
def process_image(image):
|
26 |
-
"""Process uploaded image, perform segmentation, and compute energy output."""
|
27 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
28 |
transformed = transform(image=image)['image'].unsqueeze(0).to(device)
|
29 |
-
|
30 |
with torch.no_grad():
|
31 |
output = model(transformed)
|
32 |
pred_mask = torch.sigmoid(output).squeeze().cpu().numpy()
|
33 |
pred_mask = (pred_mask > 0.5).astype(np.uint8)
|
34 |
-
|
35 |
area_m2 = np.sum(pred_mask) * (0.125 ** 2)
|
36 |
energy_kwh = area_m2 * 0.19 * 1676.2 * 0.935 / 1000
|
37 |
-
|
38 |
return pred_mask * 255, f"Estimated Solar Panel Area: {area_m2:.2f} m²", f"Estimated Energy Output: {energy_kwh:.2f} MWh per year"
|
39 |
|
|
|
40 |
demo = gr.Interface(
|
41 |
fn=process_image,
|
42 |
-
inputs=gr.Image(type="numpy"),
|
43 |
outputs=[gr.Image(type="numpy"), gr.Text(), gr.Text()],
|
44 |
title="Solar Panel Segmentation",
|
45 |
-
description="Upload an image to detect solar panels and estimate energy output."
|
46 |
)
|
47 |
|
48 |
-
demo.launch()
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
import cv2
|
|
|
6 |
from arch import SegFormerUNet
|
7 |
from albumentations import Compose, Resize, Normalize
|
8 |
from albumentations.pytorch import ToTensorV2
|
9 |
|
10 |
+
# Load model
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
model = SegFormerUNet().to(device)
|
13 |
+
checkpoint = torch.load("model/segformer_unet_focal_loss_97_63.pth", map_location=device)
|
|
|
14 |
model.load_state_dict(checkpoint)
|
15 |
model.eval()
|
|
|
16 |
|
17 |
+
# Transform
|
18 |
transform = Compose([
|
19 |
Resize(256, 256),
|
20 |
Normalize(mean=[0.5], std=[0.5]),
|
|
|
22 |
])
|
23 |
|
24 |
def process_image(image):
|
|
|
25 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
26 |
transformed = transform(image=image)['image'].unsqueeze(0).to(device)
|
|
|
27 |
with torch.no_grad():
|
28 |
output = model(transformed)
|
29 |
pred_mask = torch.sigmoid(output).squeeze().cpu().numpy()
|
30 |
pred_mask = (pred_mask > 0.5).astype(np.uint8)
|
|
|
31 |
area_m2 = np.sum(pred_mask) * (0.125 ** 2)
|
32 |
energy_kwh = area_m2 * 0.19 * 1676.2 * 0.935 / 1000
|
|
|
33 |
return pred_mask * 255, f"Estimated Solar Panel Area: {area_m2:.2f} m²", f"Estimated Energy Output: {energy_kwh:.2f} MWh per year"
|
34 |
|
35 |
+
# Gradio Interface
|
36 |
demo = gr.Interface(
|
37 |
fn=process_image,
|
38 |
+
inputs=gr.Image(type="numpy", value="PV08_315125_1194663.bmp"), # <-- default image here
|
39 |
outputs=[gr.Image(type="numpy"), gr.Text(), gr.Text()],
|
40 |
title="Solar Panel Segmentation",
|
41 |
+
description="Upload an image to detect solar panels and estimate energy output."
|
42 |
)
|
43 |
|
44 |
+
demo.launch()
|