Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
4 |
+
from datetime import datetime
|
5 |
+
import csv
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Load model and tokenizer
|
9 |
+
model = DistilBertForSequenceClassification.from_pretrained("debojit01/course-review-sentiment")
|
10 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
|
11 |
+
|
12 |
+
labels = ['negative', 'neutral', 'positive']
|
13 |
+
|
14 |
+
# Setup log files
|
15 |
+
log_path = "logs.csv"
|
16 |
+
corrections_path = "corrections.csv"
|
17 |
+
|
18 |
+
for path, headers in [(log_path, ["timestamp", "input_text", "predicted_label"]),
|
19 |
+
(corrections_path, ["timestamp", "input_text", "predicted_label", "user_correction"])]:
|
20 |
+
if not os.path.exists(path):
|
21 |
+
with open(path, mode='w', newline='') as file:
|
22 |
+
writer = csv.writer(file)
|
23 |
+
writer.writerow(headers)
|
24 |
+
|
25 |
+
def classify_review(text):
|
26 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = model(**inputs)
|
29 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
30 |
+
label_idx = torch.argmax(probs).item()
|
31 |
+
predicted_label = labels[label_idx]
|
32 |
+
|
33 |
+
# Logging
|
34 |
+
with open(log_path, mode='a', newline='') as file:
|
35 |
+
writer = csv.writer(file)
|
36 |
+
writer.writerow([datetime.now().isoformat(), text, predicted_label])
|
37 |
+
|
38 |
+
return {label: float(prob) for label, prob in zip(labels, probs[0])}, text, predicted_label
|
39 |
+
|
40 |
+
def save_correction(text, predicted_label, user_correction):
|
41 |
+
if user_correction != predicted_label:
|
42 |
+
with open(corrections_path, mode='a', newline='') as file:
|
43 |
+
writer = csv.writer(file)
|
44 |
+
writer.writerow([datetime.now().isoformat(), text, predicted_label, user_correction])
|
45 |
+
return f"Thanks! Correction recorded: {user_correction}"
|
46 |
+
|
47 |
+
# Gradio UI
|
48 |
+
with gr.Blocks() as demo:
|
49 |
+
gr.Markdown("# 📘 Course Review Sentiment Classifier")
|
50 |
+
gr.Markdown("Enter a course review and get the sentiment prediction. You can correct the result if needed.")
|
51 |
+
|
52 |
+
input_text = gr.Textbox(lines=4, placeholder="Enter course review here...")
|
53 |
+
output_label = gr.Label(num_top_classes=3)
|
54 |
+
predict_btn = gr.Button("Classify")
|
55 |
+
|
56 |
+
with gr.Row(visible=False) as correction_row:
|
57 |
+
gr.Markdown("### ❓ Is the prediction wrong?")
|
58 |
+
correction_dropdown = gr.Dropdown(choices=labels, label="Correct Sentiment")
|
59 |
+
submit_btn = gr.Button("Submit Correction")
|
60 |
+
correction_status = gr.Textbox(interactive=False)
|
61 |
+
|
62 |
+
hidden_text = gr.Textbox(visible=False)
|
63 |
+
hidden_pred = gr.Textbox(visible=False)
|
64 |
+
|
65 |
+
def show_correction_ui(result, text, pred):
|
66 |
+
return result, gr.update(visible=True), text, pred
|
67 |
+
|
68 |
+
predict_btn.click(classify_review, inputs=input_text, outputs=[output_label, hidden_text, hidden_pred])\
|
69 |
+
.then(show_correction_ui, outputs=[output_label, correction_row, hidden_text, hidden_pred])
|
70 |
+
|
71 |
+
submit_btn.click(save_correction, inputs=[hidden_text, hidden_pred, correction_dropdown], outputs=correction_status)
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
demo.launch()
|