Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import io
|
|
10 |
import os
|
11 |
import matplotlib.pyplot as plt
|
12 |
import pandas as pd
|
13 |
-
from pathlib import Path
|
14 |
import json
|
15 |
|
16 |
# Create directories if they don't exist
|
@@ -37,8 +37,19 @@ CLASSES = ["Caption", "Footnote", "Formula", "List-item", "Page-footer", "Page-h
|
|
37 |
# Define visual elements we want to extract
|
38 |
VISUAL_ELEMENTS = ["Picture", "Caption", "Table", "Formula"]
|
39 |
|
40 |
-
# Define colors for visualization
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Set up the annotator
|
44 |
box_annotator = sv.BoxAnnotator(color=COLORS)
|
@@ -60,7 +71,21 @@ def predict_layout(image):
|
|
60 |
results = model(img)[0]
|
61 |
|
62 |
# Format detections
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# Get class names
|
66 |
class_ids = detections.class_id
|
@@ -80,7 +105,6 @@ def predict_layout(image):
|
|
80 |
class_name = CLASSES[class_id]
|
81 |
|
82 |
# Include all visual elements (Pictures, Captions, Tables, Formulas)
|
83 |
-
# You can add or remove classes based on what you consider "visual elements"
|
84 |
if class_name in VISUAL_ELEMENTS:
|
85 |
x1, y1, x2, y2 = map(int, xyxy)
|
86 |
width = x2 - x1
|
@@ -178,4 +202,5 @@ with gr.Blocks() as demo:
|
|
178 |
inputs=input_image
|
179 |
)
|
180 |
|
181 |
-
|
|
|
|
10 |
import os
|
11 |
import matplotlib.pyplot as plt
|
12 |
import pandas as pd
|
13 |
+
from pathlib import Path
|
14 |
import json
|
15 |
|
16 |
# Create directories if they don't exist
|
|
|
37 |
# Define visual elements we want to extract
|
38 |
VISUAL_ELEMENTS = ["Picture", "Caption", "Table", "Formula"]
|
39 |
|
40 |
+
# Define colors for visualization - Fix for ColorPalette issue
|
41 |
+
# Use the sv.ColorPalette directly or create a custom color palette based on supervision version
|
42 |
+
try:
|
43 |
+
# Try newer versions approach
|
44 |
+
COLORS = sv.ColorPalette.default()
|
45 |
+
except (AttributeError, TypeError):
|
46 |
+
try:
|
47 |
+
# Try alternate approach for some versions
|
48 |
+
COLORS = sv.ColorPalette.from_hex(["#FF0000", "#00FF00", "#0000FF", "#FFFF00", "#FF00FF", "#00FFFF",
|
49 |
+
"#FFA500", "#800080", "#008000", "#000080", "#808080"])
|
50 |
+
except (AttributeError, TypeError):
|
51 |
+
# Fallback for older versions or different API
|
52 |
+
COLORS = sv.ColorPalette(11) # Create a color palette with 11 colors (one for each class)
|
53 |
|
54 |
# Set up the annotator
|
55 |
box_annotator = sv.BoxAnnotator(color=COLORS)
|
|
|
71 |
results = model(img)[0]
|
72 |
|
73 |
# Format detections
|
74 |
+
try:
|
75 |
+
# Try with newer supervision versions
|
76 |
+
detections = sv.Detections.from_ultralytics(results)
|
77 |
+
except (TypeError, AttributeError):
|
78 |
+
# Fallback for older versions
|
79 |
+
boxes = results.boxes.xyxy.cpu().numpy()
|
80 |
+
confidence = results.boxes.conf.cpu().numpy()
|
81 |
+
class_ids = results.boxes.cls.cpu().numpy().astype(int)
|
82 |
+
|
83 |
+
# Create Detections object manually
|
84 |
+
detections = sv.Detections(
|
85 |
+
xyxy=boxes,
|
86 |
+
confidence=confidence,
|
87 |
+
class_id=class_ids
|
88 |
+
)
|
89 |
|
90 |
# Get class names
|
91 |
class_ids = detections.class_id
|
|
|
105 |
class_name = CLASSES[class_id]
|
106 |
|
107 |
# Include all visual elements (Pictures, Captions, Tables, Formulas)
|
|
|
108 |
if class_name in VISUAL_ELEMENTS:
|
109 |
x1, y1, x2, y2 = map(int, xyxy)
|
110 |
width = x2 - x1
|
|
|
202 |
inputs=input_image
|
203 |
)
|
204 |
|
205 |
+
if __name__ == "__main__":
|
206 |
+
demo.launch()
|