Update app.py
Browse files
app.py
CHANGED
@@ -47,14 +47,24 @@ if torch.cuda.is_available():
|
|
47 |
add_watermarker=False,
|
48 |
variant="fp16"
|
49 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
if ENABLE_CPU_OFFLOAD:
|
51 |
pipe.enable_model_cpu_offload()
|
|
|
52 |
else:
|
53 |
pipe.to(device)
|
|
|
54 |
print("Loaded on Device!")
|
55 |
|
56 |
if USE_TORCH_COMPILE:
|
57 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
58 |
print("Model Compiled!")
|
59 |
|
60 |
|
@@ -70,33 +80,9 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
70 |
return seed
|
71 |
|
72 |
|
73 |
-
def generate(prompt: str,
|
74 |
-
negative_prompt: str = "",
|
75 |
-
use_negative_prompt: bool = False,
|
76 |
-
seed: int = 0,
|
77 |
-
width: int = 1024,
|
78 |
-
height: int = 1024,
|
79 |
-
guidance_scale: float = 3,
|
80 |
-
randomize_seed: bool = False,
|
81 |
-
use_resolution_binning: bool = True,
|
82 |
-
progress=gr.Progress(track_tqdm=True)):
|
83 |
-
if check_text(prompt, negative_prompt):
|
84 |
-
return 'NSFW Detection'
|
85 |
-
return _generate(
|
86 |
-
prompt,
|
87 |
-
negative_prompt,
|
88 |
-
use_negative_prompt,
|
89 |
-
seed,
|
90 |
-
width,
|
91 |
-
height,
|
92 |
-
guidance_scale,
|
93 |
-
randomize_seed,
|
94 |
-
use_resolution_binning,
|
95 |
-
progress
|
96 |
-
)
|
97 |
|
98 |
@spaces.GPU(enable_queue=True)
|
99 |
-
def
|
100 |
prompt: str,
|
101 |
negative_prompt: str = "",
|
102 |
use_negative_prompt: bool = False,
|
@@ -115,18 +101,22 @@ def _generate(
|
|
115 |
if not use_negative_prompt:
|
116 |
negative_prompt = "" # type: ignore
|
117 |
negative_prompt += default_negative
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
130 |
|
131 |
image_paths = [save_image(img) for img in images]
|
132 |
return image_paths, seed
|
|
|
47 |
add_watermarker=False,
|
48 |
variant="fp16"
|
49 |
)
|
50 |
+
pipe2 = DiffusionPipeline.from_pretrained(
|
51 |
+
"SG161222/RealVisXL_V4.0",
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
use_safetensors=True,
|
54 |
+
add_watermarker=False,
|
55 |
+
variant="fp16"
|
56 |
+
)
|
57 |
if ENABLE_CPU_OFFLOAD:
|
58 |
pipe.enable_model_cpu_offload()
|
59 |
+
pipe2.enable_model_cpu_offload()
|
60 |
else:
|
61 |
pipe.to(device)
|
62 |
+
pipe2.to(device)
|
63 |
print("Loaded on Device!")
|
64 |
|
65 |
if USE_TORCH_COMPILE:
|
66 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
67 |
+
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
|
68 |
print("Model Compiled!")
|
69 |
|
70 |
|
|
|
80 |
return seed
|
81 |
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
@spaces.GPU(enable_queue=True)
|
85 |
+
def generate(
|
86 |
prompt: str,
|
87 |
negative_prompt: str = "",
|
88 |
use_negative_prompt: bool = False,
|
|
|
101 |
if not use_negative_prompt:
|
102 |
negative_prompt = "" # type: ignore
|
103 |
negative_prompt += default_negative
|
104 |
+
|
105 |
+
options = {
|
106 |
+
"prompt":prompt,
|
107 |
+
"negative_prompt":negative_prompt,
|
108 |
+
"width":width,
|
109 |
+
"height":height,
|
110 |
+
"guidance_scale":guidance_scale,
|
111 |
+
"num_inference_steps":25,
|
112 |
+
"generator":generator,
|
113 |
+
"num_images_per_prompt":NUM_IMAGES_PER_PROMPT,
|
114 |
+
"use_resolution_binning":use_resolution_binning,
|
115 |
+
"output_type":"pil",
|
116 |
+
|
117 |
+
}
|
118 |
+
|
119 |
+
images = pipe(**options).images+pipe2(**options).images
|
120 |
|
121 |
image_paths = [save_image(img) for img in images]
|
122 |
return image_paths, seed
|