File size: 34,692 Bytes
311c0d0
 
4bb25ec
8ea0ccb
6f446d0
e305927
 
 
c1db1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311c0d0
76c92ad
d68dd9c
e9b54bf
d68dd9c
c1db1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e2aa5
76c92ad
c1db1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e2aa5
 
 
e305927
c1db1fc
e305927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e2aa5
 
e305927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f6fcc7
97738f2
08e2aa5
 
 
 
8ea0ccb
7a29ecc
6f446d0
cedc6dd
287f78e
6f446d0
cedc6dd
6f446d0
8ea0ccb
6f446d0
cedc6dd
08e2aa5
c1db1fc
08e2aa5
c1db1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e2aa5
c1db1fc
 
 
 
 
 
 
 
7a29ecc
c5cdffa
cb8f9c9
6f446d0
8ea0ccb
08e2aa5
4bb25ec
08e2aa5
8ea0ccb
08e2aa5
 
6f446d0
 
08e2aa5
d68dd9c
08e2aa5
 
6f446d0
 
8ea0ccb
6f446d0
8ea0ccb
08e2aa5
 
d68dd9c
7a29ecc
8ea0ccb
 
6f446d0
08e2aa5
 
 
 
 
 
 
8ea0ccb
 
 
08e2aa5
 
8ea0ccb
08e2aa5
 
6f446d0
08e2aa5
 
7a29ecc
8ea0ccb
6f446d0
08e2aa5
d68dd9c
8ea0ccb
08e2aa5
d68dd9c
8ea0ccb
d68dd9c
 
08e2aa5
d68dd9c
 
6f446d0
 
 
d68dd9c
 
08e2aa5
 
d68dd9c
6f446d0
d68dd9c
 
6f446d0
d68dd9c
8ea0ccb
6f446d0
08e2aa5
8ea0ccb
08e2aa5
6f446d0
 
 
 
 
d68dd9c
08e2aa5
 
 
 
8ea0ccb
08e2aa5
 
 
 
d68dd9c
 
 
 
08e2aa5
1c3bf8f
148ab21
 
 
e7f4f55
148ab21
 
 
 
 
 
 
 
d68dd9c
 
cedc6dd
d68dd9c
08e2aa5
d68dd9c
9ef5250
8ea0ccb
 
d68dd9c
08e2aa5
 
 
d68dd9c
 
 
6f446d0
8ea0ccb
6f446d0
8ea0ccb
 
6f446d0
 
8ea0ccb
6f446d0
8ea0ccb
 
 
 
 
 
 
 
 
6f446d0
 
08e2aa5
6f446d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import time
import json
from typing import Dict, List, Union, Optional
import re
from bs4 import BeautifulSoup
from duckduckgo_search import DDGS

from smolagents import Tool, CodeAgent, InferenceClientModel

import random
from smolagents import CodeAgent, InferenceClientModel

# Import our custom tools from their modules
# from smolagents.tools import DuckDuckGoSearchTool, WeatherInfoTool, HubStatsTool
# from smolagents.tools import WebPageVisitTool, WebpageContentExtractorTool

from smolagents import CodeAgent, InferenceClientModel, load_tool


# Import necessary libraries
import random
from smolagents import CodeAgent, InferenceClientModel

# Import our custom tools from their modules
# from tools import DuckDuckGoSearchTool, WeatherInfoTool, HubStatsTool
# from retriever import load_guest_dataset

from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.retrievers import BM25Retriever
import functools

# Create a knowledge base for the agent
GAIA_KNOWLEDGE = """
### AI and Agent Concepts
- An agent is an autonomous entity that observes and acts upon an environment using sensors and actuators, usually to achieve specific goals.
- GAIA (General AI Assistant) is a framework for creating and evaluating AI assistants that can perform a wide range of tasks.
- The agent loop consists of perception, reasoning, and action.
- RAG (Retrieval-Augmented Generation) combines retrieval of relevant information with generation capabilities of language models.
- An LLM (Large Language Model) is a neural network trained on vast amounts of text data to understand and generate human language.

### Agent Capabilities
- Tool use refers to an agent's ability to employ external tools like search engines, APIs, or specialized algorithms.
- An effective agent should be able to decompose complex problems into manageable parts.
- Chain-of-thought reasoning allows agents to break down problem-solving steps to improve accuracy.
- Agents should apply appropriate reasoning strategies based on the type of question (factual, analytical, etc.)
- Self-reflection helps agents identify and correct errors in their reasoning.

### Evaluation Criteria
- Agent responses should be accurate, relevant, and factually correct.
- Effective agents provide concise yet comprehensive answers.
- Agents should acknowledge limitations and uncertainties when appropriate.
- Good agents can follow multi-step instructions and fulfill all requirements.
- Reasoning transparency helps users understand how the agent arrived at its conclusions.
"""

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

LLAMA_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-3.1-8B-Instruct"
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"} if HF_API_TOKEN else {}
MAX_RETRIES = 3
RETRY_DELAY = 2  # seconds

# Create knowledge base documents
def create_knowledge_documents():
    """Create documents from the knowledge base for retrieval."""
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=50,
        separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
    )
    knowledge_chunks = text_splitter.split_text(GAIA_KNOWLEDGE)
    return [Document(page_content=chunk) for chunk in knowledge_chunks]

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------

# --- Tools ---
class WebSearchTool(Tool):
    name = "web_search"
    description = "Search the web for information about a query using DuckDuckGo."
    inputs = {
        "query": {
            "type": "string",
            "description": "The search query."
        }
    }
    output_type = "string"
    
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.max_results = 3
        
    def forward(self, query: str) -> str:
        assert isinstance(query, str), "Query must be a string."
        try:
            results = []
            with DDGS() as ddgs:
                ddgs_results = list(ddgs.text(query, max_results=self.max_results))
                
            if not ddgs_results:
                return "No web search results found."
                
            formatted_results = "\nWeb Search Results:\n"
            for i, r in enumerate(ddgs_results, 1):
                formatted_results += f"\n{i}. {r['title']}\n   {r['body']}\n   Source: {r['href']}\n"
                
            return formatted_results
        except Exception as e:
            print(f"Error in web search: {str(e)}")
            return f"Error performing web search: {str(e)}"


class WebContentTool(Tool):
    name = "web_content"
    description = "Fetch and extract content from a specific webpage."
    inputs = {
        "url": {
            "type": "string",
            "description": "The URL of the webpage to fetch content from."
        }
    }
    output_type = "string"
    
    def forward(self, url: str) -> str:
        assert isinstance(url, str), "URL must be a string."
        try:
            headers = {
                "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
            }
            response = requests.get(url, headers=headers, timeout=10)
            response.raise_for_status()
            
            soup = BeautifulSoup(response.text, 'html.parser')
            
            # Remove script and style elements
            for script in soup(["script", "style"]):
                script.extract()
                
            # Get text content
            text = soup.get_text(separator='\n')
            
            # Clean up text (remove extra whitespace and blank lines)
            lines = (line.strip() for line in text.splitlines())
            chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
            text = '\n'.join(chunk for chunk in chunks if chunk)
            
            # Truncate if too long
            if len(text) > 2000:
                text = text[:2000] + "... [content truncated]"
                
            return f"Content from {url}:\n\n{text}"
        except Exception as e:
            print(f"Error fetching web content: {str(e)}")
            return f"Error fetching content from {url}: {str(e)}"


class GaiaRetrieverTool(Tool):
    name = "gaia_retriever"
    description = "Semantic search for retrieving relevant information for GaiaAgent."
    inputs = {
        "query": {
            "type": "string",
            "description": "Query for semantic search."
        }
    }
    output_type = "string"

    def __init__(self, docs, **kwargs):
        super().__init__(**kwargs)
        self.retriever = BM25Retriever.from_documents(docs, k=3)
        self.docs = docs  # Store docs for fallback

    def forward(self, query: str) -> str:
        assert isinstance(query, str), "Query must be a string."
        try:
            docs = self.retriever.invoke(query)
            if not docs:
                # Fallback to return most relevant general knowledge
                return "\nNo specific information found. Here's some general knowledge:\n" + "".join([
                    f"\n- {self.docs[i].page_content}" for i in range(min(3, len(self.docs)))
                ])
            return "\nRetrieved Information:\n" + "".join([
                f"\n- {doc.page_content}" for doc in docs
            ])
        except Exception as e:
            print(f"Error in retriever: {str(e)}")
            # Return a fallback response
            return f"Unable to retrieve specific information. The agent will rely on its general knowledge."

# --- Agent ---
class GaiaAgent:
    def __init__(self):
        print("GaiaAgent initialized.")
        # Create knowledge base documents
        self.knowledge_docs = create_knowledge_documents()
        
        # Create our tools
        self.retriever_tool = GaiaRetrieverTool(self.knowledge_docs)
        self.web_search_tool = WebSearchTool()
        self.web_content_tool = WebContentTool()

        # Initialize the Hugging Face model
        self.model = InferenceClientModel()

        # Initialize the web search tool
        # self.search_tool = DuckDuckGoSearchTool()

        # Initialize the weather tool
        # self.weather_info_tool = WeatherInfoTool()

        # Initialize the Hub stats tool
        # self.hub_stats_tool = HubStatsTool()

        # Load the guest dataset and initialize the guest info tool
        # self.guest_info_tool = load_guest_dataset()
        
        # Set up LLM API access
        self.hf_api_url = LLAMA_API_URL
        self.headers = HEADERS
        
        # Set up caching for responses
        self.cache = {}
        
    def query_llm(self, prompt):
        """Send a prompt to the LLM API and return the response."""
        # Check cache first
        if prompt in self.cache:
            print("Using cached response")
            return self.cache[prompt]
            
        if not HF_API_TOKEN:
            # Fallback to rule-based approach if no API token
            return self.rule_based_answer(prompt)
            
        payload = {
            "inputs": prompt,
            "parameters": {
                "max_new_tokens": 512,
                "temperature": 0.7,
                "top_p": 0.9,
                "do_sample": True
            }
        }
        
        for attempt in range(MAX_RETRIES):
            try:
                response = requests.post(self.hf_api_url, headers=self.headers, json=payload, timeout=30)
                response.raise_for_status()
                result = response.json()
                
                # Extract the generated text from the response
                if isinstance(result, list) and len(result) > 0:
                    generated_text = result[0].get("generated_text", "")
                    # Clean up the response to get just the answer
                    clean_response = self.clean_response(generated_text, prompt)
                    # Cache the response
                    self.cache[prompt] = clean_response
                    return clean_response
                return "I couldn't generate a proper response."
                
            except Exception as e:
                print(f"Attempt {attempt+1}/{MAX_RETRIES} failed: {str(e)}")
                if attempt < MAX_RETRIES - 1:
                    time.sleep(RETRY_DELAY)
                else:
                    # Fall back to rule-based method on failure
                    return self.rule_based_answer(prompt)
    
    def clean_response(self, response, prompt):
        """Clean up the LLM response to extract the answer."""
        # Remove the prompt from the beginning if it's included
        if response.startswith(prompt):
            response = response[len(prompt):]
        
        # Try to find where the model's actual answer begins
        markers = ["<answer>", "<response>", "Answer:", "Response:", "Assistant:"]
        for marker in markers:
            if marker.lower() in response.lower():
                parts = response.lower().split(marker.lower(), 1)
                if len(parts) > 1:
                    response = parts[1].strip()
        
        # Remove any closing tags if they exist
        end_markers = ["</answer>", "</response>", "Human:", "User:"]
        for marker in end_markers:
            if marker.lower() in response.lower():
                response = response.lower().split(marker.lower())[0].strip()
        
        return response.strip()
    
    def rule_based_answer(self, question):
        """Fallback method using rule-based answers for common question types."""
        question_lower = question.lower()
        
        # Simple pattern matching for common question types
        if "what is" in question_lower or "define" in question_lower:
            if "agent" in question_lower:
                return "An agent is an autonomous entity that observes and acts upon an environment using sensors and actuators, usually to achieve specific goals."
            if "gaia" in question_lower:
                return "GAIA (General AI Assistant) is a framework for creating and evaluating AI assistants that can perform a wide range of tasks."
            if "llm" in question_lower or "large language model" in question_lower:
                return "A Large Language Model (LLM) is a neural network trained on vast amounts of text data to understand and generate human language."
            if "rag" in question_lower or "retrieval" in question_lower:
                return "RAG (Retrieval-Augmented Generation) combines retrieval of relevant information with generation capabilities of language models."
        
        if "how to" in question_lower:
            return "To accomplish this task, you should first understand the requirements, then implement a solution step by step, and finally test your implementation."
        
        if "example" in question_lower:
            return "Here's an example implementation that demonstrates the concept in a practical manner."
        
        if "evaluate" in question_lower or "criteria" in question_lower:
            return "Evaluation criteria for agents typically include accuracy, relevance, factual correctness, conciseness, ability to follow instructions, and transparency in reasoning."
        
        # Default response for unmatched questions
        return "Based on my understanding, the answer involves analyzing the context carefully and applying the relevant principles to arrive at a solution."

    def determine_tools_needed(self, question):
        """Determine which tools should be used for a given question."""
        question_lower = question.lower()
        
        # Patterns that suggest the need for web search
        web_search_patterns = [
            "current", "latest", "recent", "news", "update", "today", 
            "statistics", "data", "facts", "information about",
            "what is happening", "how many", "where is", "when was"
        ]
        
        # Check if the question likely needs web search
        needs_web_search = False
        for pattern in web_search_patterns:
            if pattern in question_lower:
                needs_web_search = True
                break
                
        # Check if question appears to be about GAIA, agents, or AI concepts
        needs_knowledge_retrieval = any(term in question_lower for term in 
                                       ["agent", "gaia", "llm", "ai", "artificial intelligence", 
                                        "evaluation", "tool", "rag", "retrieval"])
        
        # Determine which tools to use based on the analysis
        return {
            "use_web_search": needs_web_search,
            "use_knowledge_retrieval": needs_knowledge_retrieval or not needs_web_search,  # Fallback to knowledge retrieval
            "use_webpage_visit": "example" in question_lower or "details" in question_lower or "explain" in question_lower
        }
    
    def format_prompt(self, question, knowledge_info="", web_info="", webpage_content=""):
        """Format the question into a proper prompt for the LLM."""
        context = ""
        
        if knowledge_info:
            context += f"\nLocal Knowledge Base Information:\n{knowledge_info}\n"
            
        if web_info:
            context += f"\nWeb Search Results:\n{web_info}\n"
            
        if webpage_content:
            context += f"\nDetailed Web Content:\n{webpage_content}\n"
            
        if context:
            return f"""You are an intelligent AI assistant specialized in answering questions about AI agents, GAIA (General AI Assistant), and related concepts.
Use the following information to help answer the question accurately. If the information doesn't contain what you need, use your general knowledge.

{context}

Question: {question}

Provide a clear, concise, and accurate answer. Use reasoning steps when appropriate. If you're uncertain, acknowledge limitations.

Answer:"""
        else:
            return f"""You are an intelligent AI assistant specialized in answering questions about AI agents, GAIA (General AI Assistant), and related concepts.

Question: {question}

Provide a clear, concise, and accurate answer. Use reasoning steps when appropriate. If you're uncertain, acknowledge limitations.

Answer:"""
    
    def __call__(self, question: str) -> str:
        print(f"GaiaAgent received question (first 50 chars): {question[:50]}...")
        
        try:
            # Step 1: Determine which tools to use
            tool_selection = self.determine_tools_needed(question)
            
            # Step 2: Gather information from selected tools
            knowledge_info = ""
            web_info = ""
            webpage_content = ""
            
            # Get knowledge base information
            if tool_selection["use_knowledge_retrieval"]:
                try:
                    knowledge_info = self.retriever_tool.forward(question)
                    print("Retrieved knowledge base information")
                except Exception as e:
                    print(f"Error retrieving knowledge base information: {e}")
                
            # Get web search results
            if tool_selection["use_web_search"]:
                try:
                    web_info = self.web_search_tool.forward(question)
                    print("Retrieved web search results")
                except Exception as e:
                    print(f"Error with web search: {e}")
                
                # If web search found URLs and we should visit them
                if tool_selection["use_webpage_visit"] and web_info and "http" in web_info.lower():
                    # Extract URL from search results
                    url_match = re.search(r'Source: (https?://[^\s]+)', web_info)
                    if url_match:
                        url = url_match.group(1)
                        try:
                            content_result = self.web_content_tool.forward(url)
                            
                            # Only use if result seems valid
                            if content_result and len(content_result) > 100:
                                webpage_content = content_result
                                print(f"Retrieved webpage content from {url}")
                            else:
                                print("Webpage content was too short or empty")
                                
                        except Exception as e:
                            print(f"Error extracting webpage content: {e}")
            
            # Step 3: Format prompt with gathered information
            prompt = self.format_prompt(question, knowledge_info, web_info, webpage_content)
            
            # Step 4: Query the LLM with the formatted prompt
            answer = self.query_llm(prompt)
            
            print(f"GaiaAgent returning answer (first 50 chars): {answer[:50]}...")
            return answer
            
        except Exception as e:
            print(f"Error in GaiaAgent: {e}")
            # Fallback to the rule-based method if anything goes wrong
            fallback_answer = self.rule_based_answer(question)
            print(f"GaiaAgent returning fallback answer: {fallback_answer[:50]}...")
            return fallback_answer
    
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        # Initialize the Hugging Face API client
        # https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
        self.hf_api_url = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
        self.hf_api_token = os.getenv("HF_API_TOKEN")
        if not self.hf_api_token:
            print("WARNING: HF_API_TOKEN not found. Using default fallback methods.")
        self.headers = {"Authorization": f"Bearer {self.hf_api_token}"} if self.hf_api_token else {}
        self.max_retries = 3
        self.retry_delay = 2  # seconds
        
    def query_llm(self, prompt):
        """Send a prompt to the LLM API and return the response."""
        if not self.hf_api_token:
            # Fallback to a rule-based approach if no API token
            return self.rule_based_answer(prompt)
            
        payload = {
            "inputs": prompt,
            "parameters": {
                "max_new_tokens": 512,
                "temperature": 0.7,
                "top_p": 0.9,
                "do_sample": True
            }
        }
        
        for attempt in range(self.max_retries):
            try:
                response = requests.post(self.hf_api_url, headers=self.headers, json=payload, timeout=30)
                response.raise_for_status()
                result = response.json()
                
                # Extract the generated text from the response
                if isinstance(result, list) and len(result) > 0:
                    generated_text = result[0].get("generated_text", "")
                    # Clean up the response to get just the answer
                    return self.clean_response(generated_text, prompt)
                return "I couldn't generate a proper response."
                
            except Exception as e:
                print(f"Attempt {attempt+1}/{self.max_retries} failed: {str(e)}")
                if attempt < self.max_retries - 1:
                    time.sleep(self.retry_delay)
                else:
                    # Fall back to rule-based method on failure
                    return self.rule_based_answer(prompt)
    
    def clean_response(self, response, prompt):
        """Clean up the LLM response to extract the answer."""
        # Remove the prompt from the beginning if it's included
        if response.startswith(prompt):
            response = response[len(prompt):]
        
        # Try to find where the model's actual answer begins
        # This is model-specific and may need adjustments
        markers = ["<answer>", "<response>", "Answer:", "Response:"]
        for marker in markers:
            if marker.lower() in response.lower():
                parts = response.lower().split(marker.lower(), 1)
                if len(parts) > 1:
                    response = parts[1].strip()
        
        # Remove any closing tags if they exist
        end_markers = ["</answer>", "</response>"]
        for marker in end_markers:
            if marker.lower() in response.lower():
                response = response.lower().split(marker.lower())[0].strip()
        
        return response.strip()
    
    def rule_based_answer(self, question):
        """Fallback method using rule-based answers for common question types."""
        question_lower = question.lower()
        
        # Simple pattern matching for common question types
        if "what is" in question_lower or "define" in question_lower:
            if "agent" in question_lower:
                return "An agent is an autonomous entity that observes and acts upon an environment using sensors and actuators, usually to achieve specific goals."
            if "gaia" in question_lower:
                return "GAIA (General AI Assistant) is a framework for creating and evaluating AI assistants that can perform a wide range of tasks."
        
        if "how to" in question_lower:
            return "To accomplish this task, you should first understand the requirements, then implement a solution step by step, and finally test your implementation."
        
        if "example" in question_lower:
            return "Here's an example implementation that demonstrates the concept in a practical manner."
        
        # Default response for unmatched questions
        return "Based on my understanding, the answer involves analyzing the context carefully and applying the relevant principles to arrive at a solution."
    
    def format_prompt(self, question):
        """Format the question into a proper prompt for the LLM."""
        return f"""You are an intelligent AI assistant. Please answer the following question accurately and concisely:

Question: {question}

Answer:"""
    
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        
        try:
            # Format the question as a prompt
            prompt = self.format_prompt(question)
            
            # Query the LLM
            answer = self.query_llm(prompt)
            
            print(f"Agent returning answer (first 50 chars): {answer[:50]}...")
            return answer
            
        except Exception as e:
            print(f"Error in agent: {e}")
            # Fallback to the rule-based method if anything goes wrong
            fallback_answer = self.rule_based_answer(question)
            print(f"Agent returning fallback answer: {fallback_answer[:50]}...")
            return fallback_answer

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        print("Initializing GaiaAgent...")
        agent = GaiaAgent()

        # Initialize the Hugging Face model
        model = InferenceClientModel()

        # Initialize the web search tool
        #search_tool = DuckDuckGoSearchTool()

        # Initialize the weather tool
        #weather_info_tool = WeatherInfoTool()

        # Initialize the Hub stats tool
        #hub_stats_tool = HubStatsTool()

        # Load the guest dataset and initialize the guest info tool
        guest_info_tool = load_guest_dataset()

        # Initialize the Hugging Face model
        model = InferenceClientModel()

        # Load the DuckDuckGo search tool dynamically
        search_tool = load_tool(repo_id="smol-ai/duckduckgo-search", trust_remote_code=True)


        agent = CodeAgent(
            tools=[guest_info_tool, search_tool], 
            model=model,
            add_base_tools=True,  # Add any additional base tools
            planning_interval=3   # Enable planning every 3 steps
        )
        
        print("GaiaAgent initialization complete.")
    except Exception as e:
        print(f"Error instantiating GaiaAgent: {e}")
        print("Falling back to BasicAgent...")
        try:
            agent = BasicAgent()
            print("BasicAgent initialization complete.")
        except Exception as e:
            print(f"Error instantiating BasicAgent: {e}")
            return f"Error initializing agents: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)