dasomaru commited on
Commit
d3411be
ยท
verified ยท
1 Parent(s): ccfdfe2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -49
app.py CHANGED
@@ -8,7 +8,7 @@ from services.rag_pipeline import rag_pipeline
8
  model_name = "dasomaru/gemma-3-4bit-it-demo"
9
 
10
 
11
- # ๐Ÿš€ tokenizer๋Š” CPU์—์„œ๋„ ๋ฏธ๋ฆฌ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ์Œ
12
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
13
  # ๐Ÿš€ model์€ CPU๋กœ๋งŒ ๋จผ์ € ์˜ฌ๋ฆผ (GPU ์•„์ง ์—†์Œ)
14
  model = AutoModelForCausalLM.from_pretrained(
@@ -17,65 +17,37 @@ model = AutoModelForCausalLM.from_pretrained(
17
  trust_remote_code=True,
18
  )
19
 
20
- # v0
 
 
21
  @spaces.GPU(duration=300)
22
- def generate_response(query):
23
- # ๐Ÿš€ generate_response ํ•จ์ˆ˜ ์•ˆ์—์„œ ๋งค๋ฒˆ ๋กœ๋“œ
24
- # tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
25
- # model = AutoModelForCausalLM.from_pretrained(
26
- # model_name,
27
- # torch_dtype=torch.float16,
28
- # device_map="auto", # โœ… ์ค‘์š”: ์ž๋™์œผ๋กœ GPU ํ• ๋‹น
29
- # trust_remote_code=True,
30
- # )
31
  tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
32
  model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
33
  model.to("cuda")
34
 
35
- # 1. ๊ฒ€์ƒ‰
36
- top_k = 5
37
- retrieved_docs = search_documents(query, top_k=top_k)
38
-
39
- # 2. ํ”„๋กฌํ”„ํŠธ ์กฐ๋ฆฝ
40
- prompt = (
41
- "๋‹น์‹ ์€ ๊ณต์ธ์ค‘๊ฐœ์‚ฌ ์‹œํ—˜ ๋ฌธ์ œ ์ถœ์ œ ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.\n\n"
42
- "๋‹ค์Œ์€ ๊ธฐ์ถœ ๋ฌธ์ œ ๋ฐ ๊ด€๋ จ ๋ฒ•๋ น ์ •๋ณด์ž…๋‹ˆ๋‹ค:\n"
43
- )
44
- for idx, doc in enumerate(retrieved_docs, 1):
45
- prompt += f"- {doc}\n"
46
- prompt += f"\n์ด ์ •๋ณด๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์š”์ฒญ์— ๋‹ต๋ณ€ํ•ด ์ฃผ์„ธ์š”.\n\n"
47
- prompt += f"[์งˆ๋ฌธ]\n{query}\n\n[๋‹ต๋ณ€]\n"
48
-
49
- # 3. ๋‹ต๋ณ€ ์ƒ์„ฑ
50
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # โœ… model.device
51
- outputs = model.generate(
52
- **inputs,
53
- max_new_tokens=512,
54
- temperature=0.7,
55
- top_p=0.9,
56
- top_k=50,
57
- do_sample=True,
58
- )
59
-
60
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
61
-
62
- # v1
63
- @spaces.GPU(duration=300)
64
- def generate_response_with_pipeline(query):
65
- return rag_pipeline(query)
66
-
67
- # v2
68
- search_cache = {}
69
- @spaces.GPU(duration=300)
70
- def search_documents_with_cache(query: str):
71
  if query in search_cache:
72
  print(f"โšก ์บ์‹œ ์‚ฌ์šฉ: '{query}'")
73
  return search_cache[query]
74
 
 
75
  results = rag_pipeline(query)
 
 
 
 
 
76
  search_cache[query] = results
77
  return results
 
 
 
 
 
 
 
 
 
78
 
79
-
80
- demo = gr.Interface(fn=search_documents_with_cache, inputs="text", outputs="text")
81
  demo.launch()
 
8
  model_name = "dasomaru/gemma-3-4bit-it-demo"
9
 
10
 
11
+ # 1. ๋ชจ๋ธ/ํ† ํฌ๋‚˜์ด์ € 1ํšŒ ๋กœ๋”ฉ
12
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
13
  # ๐Ÿš€ model์€ CPU๋กœ๋งŒ ๋จผ์ € ์˜ฌ๋ฆผ (GPU ์•„์ง ์—†์Œ)
14
  model = AutoModelForCausalLM.from_pretrained(
 
17
  trust_remote_code=True,
18
  )
19
 
20
+ # 2. ์บ์‹œ ๊ด€๋ฆฌ
21
+ search_cache = {}
22
+
23
  @spaces.GPU(duration=300)
24
+ def generate_response(query: str):
 
 
 
 
 
 
 
 
25
  tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
26
  model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
27
  model.to("cuda")
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  if query in search_cache:
30
  print(f"โšก ์บ์‹œ ์‚ฌ์šฉ: '{query}'")
31
  return search_cache[query]
32
 
33
+ # ๐Ÿ”ฅ rag_pipeline์„ ํ˜ธ์ถœํ•ด์„œ ๊ฒ€์ƒ‰ + ์ƒ์„ฑ
34
  results = rag_pipeline(query)
35
+
36
+ # ๊ฒฐ๊ณผ๊ฐ€ list์ผ ๊ฒฝ์šฐ ํ•ฉ์น˜๊ธฐ
37
+ if isinstance(results, list):
38
+ results = "\n\n".join(results)
39
+
40
  search_cache[query] = results
41
  return results
42
+
43
+ # 3. Gradio ์ธํ„ฐํŽ˜์ด์Šค
44
+ demo = gr.Interface(
45
+ fn=generate_response,
46
+ inputs=gr.Textbox(lines=2, placeholder="์งˆ๋ฌธ์„ ์ž…๋ ฅํ•˜์„ธ์š”"),
47
+ outputs="text",
48
+ title="Law RAG Assistant",
49
+ description="๋ฒ•๋ น ๊ธฐ๋ฐ˜ RAG ํŒŒ์ดํ”„๋ผ์ธ ํ…Œ์ŠคํŠธ",
50
+ )
51
 
52
+ # demo.launch(server_name="0.0.0.0", server_port=7860) # ๐Ÿš€ API ๋ฐฐํฌ ์ค€๋น„ ๊ฐ€๋Šฅ
 
53
  demo.launch()