Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from services.rag_pipeline import rag_pipeline
|
|
8 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
9 |
|
10 |
|
11 |
-
#
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
# ๐ model์ CPU๋ก๋ง ๋จผ์ ์ฌ๋ฆผ (GPU ์์ง ์์)
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -17,65 +17,37 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
17 |
trust_remote_code=True,
|
18 |
)
|
19 |
|
20 |
-
#
|
|
|
|
|
21 |
@spaces.GPU(duration=300)
|
22 |
-
def generate_response(query):
|
23 |
-
# ๐ generate_response ํจ์ ์์์ ๋งค๋ฒ ๋ก๋
|
24 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
25 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
26 |
-
# model_name,
|
27 |
-
# torch_dtype=torch.float16,
|
28 |
-
# device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
|
29 |
-
# trust_remote_code=True,
|
30 |
-
# )
|
31 |
tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
|
32 |
model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
|
33 |
model.to("cuda")
|
34 |
|
35 |
-
# 1. ๊ฒ์
|
36 |
-
top_k = 5
|
37 |
-
retrieved_docs = search_documents(query, top_k=top_k)
|
38 |
-
|
39 |
-
# 2. ํ๋กฌํํธ ์กฐ๋ฆฝ
|
40 |
-
prompt = (
|
41 |
-
"๋น์ ์ ๊ณต์ธ์ค๊ฐ์ฌ ์ํ ๋ฌธ์ ์ถ์ ์ ๋ฌธ๊ฐ์
๋๋ค.\n\n"
|
42 |
-
"๋ค์์ ๊ธฐ์ถ ๋ฌธ์ ๋ฐ ๊ด๋ จ ๋ฒ๋ น ์ ๋ณด์
๋๋ค:\n"
|
43 |
-
)
|
44 |
-
for idx, doc in enumerate(retrieved_docs, 1):
|
45 |
-
prompt += f"- {doc}\n"
|
46 |
-
prompt += f"\n์ด ์ ๋ณด๋ฅผ ์ฐธ๊ณ ํ์ฌ ์ฌ์ฉ์์ ์์ฒญ์ ๋ต๋ณํด ์ฃผ์ธ์.\n\n"
|
47 |
-
prompt += f"[์ง๋ฌธ]\n{query}\n\n[๋ต๋ณ]\n"
|
48 |
-
|
49 |
-
# 3. ๋ต๋ณ ์์ฑ
|
50 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # โ
model.device
|
51 |
-
outputs = model.generate(
|
52 |
-
**inputs,
|
53 |
-
max_new_tokens=512,
|
54 |
-
temperature=0.7,
|
55 |
-
top_p=0.9,
|
56 |
-
top_k=50,
|
57 |
-
do_sample=True,
|
58 |
-
)
|
59 |
-
|
60 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
61 |
-
|
62 |
-
# v1
|
63 |
-
@spaces.GPU(duration=300)
|
64 |
-
def generate_response_with_pipeline(query):
|
65 |
-
return rag_pipeline(query)
|
66 |
-
|
67 |
-
# v2
|
68 |
-
search_cache = {}
|
69 |
-
@spaces.GPU(duration=300)
|
70 |
-
def search_documents_with_cache(query: str):
|
71 |
if query in search_cache:
|
72 |
print(f"โก ์บ์ ์ฌ์ฉ: '{query}'")
|
73 |
return search_cache[query]
|
74 |
|
|
|
75 |
results = rag_pipeline(query)
|
|
|
|
|
|
|
|
|
|
|
76 |
search_cache[query] = results
|
77 |
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
demo = gr.Interface(fn=search_documents_with_cache, inputs="text", outputs="text")
|
81 |
demo.launch()
|
|
|
8 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
9 |
|
10 |
|
11 |
+
# 1. ๋ชจ๋ธ/ํ ํฌ๋์ด์ 1ํ ๋ก๋ฉ
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
# ๐ model์ CPU๋ก๋ง ๋จผ์ ์ฌ๋ฆผ (GPU ์์ง ์์)
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
17 |
trust_remote_code=True,
|
18 |
)
|
19 |
|
20 |
+
# 2. ์บ์ ๊ด๋ฆฌ
|
21 |
+
search_cache = {}
|
22 |
+
|
23 |
@spaces.GPU(duration=300)
|
24 |
+
def generate_response(query: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
|
26 |
model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
|
27 |
model.to("cuda")
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
if query in search_cache:
|
30 |
print(f"โก ์บ์ ์ฌ์ฉ: '{query}'")
|
31 |
return search_cache[query]
|
32 |
|
33 |
+
# ๐ฅ rag_pipeline์ ํธ์ถํด์ ๊ฒ์ + ์์ฑ
|
34 |
results = rag_pipeline(query)
|
35 |
+
|
36 |
+
# ๊ฒฐ๊ณผ๊ฐ list์ผ ๊ฒฝ์ฐ ํฉ์น๊ธฐ
|
37 |
+
if isinstance(results, list):
|
38 |
+
results = "\n\n".join(results)
|
39 |
+
|
40 |
search_cache[query] = results
|
41 |
return results
|
42 |
+
|
43 |
+
# 3. Gradio ์ธํฐํ์ด์ค
|
44 |
+
demo = gr.Interface(
|
45 |
+
fn=generate_response,
|
46 |
+
inputs=gr.Textbox(lines=2, placeholder="์ง๋ฌธ์ ์
๋ ฅํ์ธ์"),
|
47 |
+
outputs="text",
|
48 |
+
title="Law RAG Assistant",
|
49 |
+
description="๋ฒ๋ น ๊ธฐ๋ฐ RAG ํ์ดํ๋ผ์ธ ํ
์คํธ",
|
50 |
+
)
|
51 |
|
52 |
+
# demo.launch(server_name="0.0.0.0", server_port=7860) # ๐ API ๋ฐฐํฌ ์ค๋น ๊ฐ๋ฅ
|
|
|
53 |
demo.launch()
|