gemma / retriever /vectordb_rerank_law.py
dasomaru's picture
Upload folder using huggingface_hub
baaabde verified
# vectordb_relank_law.py
import faiss
import numpy as np
import os
from chromadb import PersistentClient
from chromadb.utils import embedding_functions
from sentence_transformers import SentenceTransformer
from retriever.reranker import rerank_documents
# chroma vector config v2
embedding_models = [
"upskyy/bge-m3-korean",
"jhgan/ko-sbert-sts",
"BM-K/KoSimCSE-roberta",
"BM-K/KoSimCSE-v2-multitask",
"snunlp/KR-SBERT-V40K-klueNLI-augSTS",
"beomi/KcELECTRA-small-v2022",
]
# law_db config v2
CHROMA_PATH = os.path.abspath("data/index/law_db")
COLLECTION_NAME = "law_all"
EMBEDDING_MODEL_NAME = embedding_models[0] # ์‚ฌ์šฉํ•˜๊ณ ์ž ํ•˜๋Š” ๋ชจ๋ธ ์„ ํƒ
# 1. ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋“œ v2
# embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME)
# 2. ์ž„๋ฒ ๋”ฉ ํ•จ์ˆ˜ ์„ค์ •
embedding_fn = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=EMBEDDING_MODEL_NAME)
# 3. Chroma ํด๋ผ์ด์–ธํŠธ ๋ฐ ์ปฌ๋ ‰์…˜ ๋กœ๋“œ
client = PersistentClient(path=CHROMA_PATH)
collection = client.get_collection(name=COLLECTION_NAME, embedding_function=embedding_fn)
# 4. ๊ฒ€์ƒ‰ ํ•จ์ˆ˜
def search_documents(query: str, top_k: int = 5):
print(f"\n๐Ÿ” ๊ฒ€์ƒ‰์–ด: '{query}'")
results = collection.query(
query_texts=[query],
n_results=top_k,
include=["documents", "metadatas", "distances"]
)
# ๋ฌธ์„œ ๋ฆฌ์ŠคํŠธ๋งŒ ์ถ”์ถœ
docs = results['documents'][0]
metadatas = results['metadatas'][0]
distances = results['distances'][0]
# Rerank ๋ฌธ์„œ
reranked_docs = rerank_documents(query, docs, top_k=top_k)
# Rerank๋œ ๋ฌธ์„œ์— ๋งž์ถฐ metadata, distance ๋‹ค์‹œ ์ •๋ ฌ
reranked_data = []
for doc in reranked_docs:
idx = docs.index(doc)
reranked_data.append((doc, metadatas[idx], distances[idx]))
for i, (doc, meta, dist) in enumerate(reranked_data):
print(f"\n๐Ÿ“„ ๊ฒฐ๊ณผ {i+1} (์œ ์‚ฌ๋„: {1 - dist:.2f})")
print(f"๋ฌธ์„œ: {doc[:150]}...")
print("๋ฉ”ํƒ€๋ฐ์ดํ„ฐ:")
print(meta)
return reranked_data # ํ•„์š”ํ•˜๋ฉด ๋ฆฌํ„ด