gemma / retriever /vectordb_rerank.py
dasomaru's picture
Upload folder using huggingface_hub
9b14ff1 verified
raw
history blame
1.27 kB
import faiss
import numpy as np
import os
from sentence_transformers import SentenceTransformer
from retriever.reranker import rerank_documents
# 1. ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ ๋กœ๋“œ
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# 2. ๋ฒกํ„ฐDB (FAISS Index) ์ดˆ๊ธฐํ™”
INDEX_PATH = "data/index/index.faiss"
DOCS_PATH = "data/index/docs.npy"
if os.path.exists(INDEX_PATH) and os.path.exists(DOCS_PATH):
index = faiss.read_index(INDEX_PATH)
documents = np.load(DOCS_PATH, allow_pickle=True)
else:
index = None
documents = None
print("No FAISS index or docs found. Please build the index first.")
# 3. ๊ฒ€์ƒ‰ ํ•จ์ˆ˜
def search_documents(query: str, top_k: int = 5):
if index is None or documents is None:
raise ValueError("Index or documents not loaded. Build the FAISS index first.")
# 1. FAISS rough ๊ฒ€์ƒ‰
query_embedding = embedding_model.encode([query], convert_to_tensor=True).cpu().detach().numpy()
distances, indices = index.search(query_embedding, top_k)
results = [documents[idx] for idx in indices[0] if idx != -1]
# 2. Reranking ์ ์šฉ
reranked_results = rerank_documents(query, results, top_k=top_k)
return reranked_results