|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "dasomaru/gemma-3-4bit-it-demo" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
) |
|
|
|
@spaces.GPU(duration=300) |
|
def generate_response(prompt): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo") |
|
model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo") |
|
model.to("cuda") |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7, |
|
top_p=0.9, |
|
top_k=50, |
|
do_sample=True,) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text") |
|
demo.launch() |
|
|
|
|
|
|