File size: 2,205 Bytes
2c5f455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from retriever.vectordb import search_documents  # ๐Ÿง  RAG ๊ฒ€์ƒ‰๊ธฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ

model_name = "dasomaru/gemma-3-4bit-it-demo"


# ๐Ÿš€ tokenizer๋Š” CPU์—์„œ๋„ ๋ฏธ๋ฆฌ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ์Œ
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# ๐Ÿš€ model์€ CPU๋กœ๋งŒ ๋จผ์ € ์˜ฌ๋ฆผ (GPU ์•„์ง ์—†์Œ)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,  # 4bit model์ด๋‹ˆ๊นŒ
    trust_remote_code=True,
)

@spaces.GPU(duration=300)
def generate_response(query):
    # ๐Ÿš€ generate_response ํ•จ์ˆ˜ ์•ˆ์—์„œ ๋งค๋ฒˆ ๋กœ๋“œ
    # tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    # model = AutoModelForCausalLM.from_pretrained(
    #     model_name,
    #     torch_dtype=torch.float16,
    #     device_map="auto",  # โœ… ์ค‘์š”: ์ž๋™์œผ๋กœ GPU ํ• ๋‹น
    #     trust_remote_code=True,
    # )
    tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
    model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
    model.to("cuda")    

    # 1. ๊ฒ€์ƒ‰
    top_k = 5
    retrieved_docs = search_documents(query, top_k=top_k)

    # 2. ํ”„๋กฌํ”„ํŠธ ์กฐ๋ฆฝ
    prompt = (
        "๋‹น์‹ ์€ ๊ณต์ธ์ค‘๊ฐœ์‚ฌ ์‹œํ—˜ ๋ฌธ์ œ ์ถœ์ œ ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.\n\n"
        "๋‹ค์Œ์€ ๊ธฐ์ถœ ๋ฌธ์ œ ๋ฐ ๊ด€๋ จ ๋ฒ•๋ น ์ •๋ณด์ž…๋‹ˆ๋‹ค:\n"
    )
    for idx, doc in enumerate(retrieved_docs, 1):
        prompt += f"- {doc}\n"
    prompt += f"\n์ด ์ •๋ณด๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์š”์ฒญ์— ๋‹ต๋ณ€ํ•ด ์ฃผ์„ธ์š”.\n\n"
    prompt += f"[์งˆ๋ฌธ]\n{query}\n\n[๋‹ต๋ณ€]\n"

    # 3. ๋‹ต๋ณ€ ์ƒ์„ฑ
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)  # โœ… model.device
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.9,
        top_k=50,
        do_sample=True,
    )

    return tokenizer.decode(outputs[0], skip_special_tokens=True)

demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()