File size: 2,205 Bytes
2c5f455 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from retriever.vectordb import search_documents # ๐ง RAG ๊ฒ์๊ธฐ ๋ถ๋ฌ์ค๊ธฐ
model_name = "dasomaru/gemma-3-4bit-it-demo"
# ๐ tokenizer๋ CPU์์๋ ๋ฏธ๋ฆฌ ๋ถ๋ฌ์ฌ ์ ์์
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# ๐ model์ CPU๋ก๋ง ๋จผ์ ์ฌ๋ฆผ (GPU ์์ง ์์)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # 4bit model์ด๋๊น
trust_remote_code=True,
)
@spaces.GPU(duration=300)
def generate_response(query):
# ๐ generate_response ํจ์ ์์์ ๋งค๋ฒ ๋ก๋
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.float16,
# device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
# trust_remote_code=True,
# )
tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
model.to("cuda")
# 1. ๊ฒ์
top_k = 5
retrieved_docs = search_documents(query, top_k=top_k)
# 2. ํ๋กฌํํธ ์กฐ๋ฆฝ
prompt = (
"๋น์ ์ ๊ณต์ธ์ค๊ฐ์ฌ ์ํ ๋ฌธ์ ์ถ์ ์ ๋ฌธ๊ฐ์
๋๋ค.\n\n"
"๋ค์์ ๊ธฐ์ถ ๋ฌธ์ ๋ฐ ๊ด๋ จ ๋ฒ๋ น ์ ๋ณด์
๋๋ค:\n"
)
for idx, doc in enumerate(retrieved_docs, 1):
prompt += f"- {doc}\n"
prompt += f"\n์ด ์ ๋ณด๋ฅผ ์ฐธ๊ณ ํ์ฌ ์ฌ์ฉ์์ ์์ฒญ์ ๋ต๋ณํด ์ฃผ์ธ์.\n\n"
prompt += f"[์ง๋ฌธ]\n{query}\n\n[๋ต๋ณ]\n"
# 3. ๋ต๋ณ ์์ฑ
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # โ
model.device
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
top_k=50,
do_sample=True,
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()
|