File size: 2,355 Bytes
a88d56c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# from retriever.vectordb_rerank import search_documents # ๐ง RAG ๊ฒ์๊ธฐ ๋ถ๋ฌ์ค๊ธฐ
from services.rag_pipeline import rag_pipeline
model_name = "dasomaru/gemma-3-4bit-it-demo"
# 1. ๋ชจ๋ธ/ํ ํฌ๋์ด์ 1ํ ๋ก๋ฉ
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# ๐ model์ CPU๋ก๋ง ๋จผ์ ์ฌ๋ฆผ (GPU ์์ง ์์)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # 4bit model์ด๋๊น
device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
trust_remote_code=True,
)
# 2. ์บ์ ๊ด๋ฆฌ
search_cache = {}
@spaces.GPU(duration=300)
def generate_response(query: str):
tokenizer = AutoTokenizer.from_pretrained(
"dasomaru/gemma-3-4bit-it-demo",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"dasomaru/gemma-3-4bit-it-demo",
torch_dtype=torch.float16, # 4bit model์ด๋๊น
device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
trust_remote_code=True,
)
model.to("cuda")
if query in search_cache:
print(f"โก ์บ์ ์ฌ์ฉ: '{query}'")
return search_cache[query]
# ๐ฅ rag_pipeline์ ํธ์ถํด์ ๊ฒ์ + ์์ฑ
# ๊ฒ์
top_k = 5
results = rag_pipeline(query, top_k=top_k)
# ๊ฒฐ๊ณผ๊ฐ list์ผ ๊ฒฝ์ฐ ํฉ์น๊ธฐ
if isinstance(results, list):
results = "\n\n".join(results)
search_cache[query] = results
# return results
inputs = tokenizer(results, return_tensors="pt").to(model.device) # โ
model.device
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
top_k=50,
do_sample=True,
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# 3. Gradio ์ธํฐํ์ด์ค
demo = gr.Interface(
fn=generate_response,
# inputs=gr.Textbox(lines=2, placeholder="์ง๋ฌธ์ ์
๋ ฅํ์ธ์"),
inputs="text",
outputs="text",
title="Law RAG Assistant",
description="๋ฒ๋ น ๊ธฐ๋ฐ RAG ํ์ดํ๋ผ์ธ ํ
์คํธ",
)
# demo.launch(server_name="0.0.0.0", server_port=7860) # ๐ API ๋ฐฐํฌ ์ค๋น ๊ฐ๋ฅ
# demo.launch()
demo.launch(debug=True)
|