import gradio as gr from PIL import Image import os import numpy as np import tensorflow as tf import requests from skimage.color import lab2rgb from models.auto_encoder_gray2color import SpatialAttention WIDTH, HEIGHT = 512, 512 # Load the saved model once at startup load_model_path = "./ckpts/best_model.h5" if not os.path.exists(load_model_path): os.makedirs(os.path.dirname(load_model_path), exist_ok=True) url = "https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape/resolve/main/ckpts/best_model.h5" print(f"Downloading model from {url}...") with requests.get(url, stream=True) as r: r.raise_for_status() with open(load_model_path, "wb") as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) print("Download complete.") print(f"Loading model from {load_model_path}...") loaded_autoencoder = tf.keras.models.load_model( load_model_path, custom_objects={'SpatialAttention': SpatialAttention} ) def process_image(input_img): # Store original input dimensions original_width, original_height = input_img.size # Convert PIL Image to grayscale and resize to model input size img = input_img.convert("L") # Convert to grayscale (single channel) img = img.resize((WIDTH, HEIGHT)) # Resize to 512x512 for model img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0 # Normalize to [0, 1] img_array = img_array[None, ..., 0:1] # Add batch dimension, shape: (1, 512, 512, 1) # Run inference (assuming loaded_autoencoder predicts a*b* channels) output_array = loaded_autoencoder.predict(img_array) # Shape: (1, 512, 512, 2) for a*b* print("output_array shape: ", output_array.shape) # Extract L* (grayscale input) and a*b* (model output) L_channel = img_array[0, :, :, 0] * 100.0 # Denormalize L* to [0, 100] ab_channels = output_array[0] * 128.0 # Denormalize a*b* to [-128, 128] # Combine L*, a*, b* into a 3-channel L*a*b* image lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1) # Shape: (512, 512, 3) # Convert L*a*b* to RGB rgb_array = lab2rgb(lab_image) # Convert to RGB, output in [0, 1] rgb_array = np.clip(rgb_array, 0, 1) * 255.0 # Scale to [0, 255] rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB") # Create RGB PIL image # Resize output image to match input image resolution rgb_image = rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS) return rgb_image custom_css = """ body {background: linear-gradient(135deg, #f0f4f8 0%, #d9e2ec 100%) !important;} .gradio-container {background: transparent !important;} h1, .gr-title {color: #007bff !important; font-family: 'Segoe UI', sans-serif;} .gr-description {color: #333333 !important; font-size: 1.1em;} .gr-input, .gr-output {border-radius: 18px !important; box-shadow: 0 4px 24px rgba(0,0,0,0.1);} .gr-button {background: linear-gradient(90deg, #007bff 0%, #00c4cc 100%) !important; color: #fff !important; border: none !important; border-radius: 12px !important;} """ demo = gr.Interface( fn=process_image, inputs=gr.Image(type="pil", label="Upload Grayscale Landscape", image_mode="L"), outputs=gr.Image(type="pil", label="Colorized Output"), title="🌄 Gray2Color Landscape Autoencoder", description=( "
" "Transform your grayscale landscape photos into vivid color with a state-of-the-art autoencoder.
" "Simply upload a grayscale image and see the magic happen!" "
" ), theme="soft", css=custom_css, allow_flagging="never", examples=[ ["examples/example_input_1.jpg", "examples/example_output_1.jpg"], ["examples/example_input_2.jpg", "examples/example_output_2.jpg"] ] ) if __name__ == "__main__": demo.launch()