|
import gradio as gr |
|
from PIL import Image |
|
import os |
|
import numpy as np |
|
import tensorflow as tf |
|
import requests |
|
from skimage.color import lab2rgb |
|
|
|
from models.auto_encoder_gray2color import SpatialAttention |
|
|
|
WIDTH, HEIGHT = 512, 512 |
|
|
|
|
|
load_model_path = "./ckpts/best_model.h5" |
|
if not os.path.exists(load_model_path): |
|
os.makedirs(os.path.dirname(load_model_path), exist_ok=True) |
|
url = "https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape/resolve/main/ckpts/best_model.h5" |
|
print(f"Downloading model from {url}...") |
|
with requests.get(url, stream=True) as r: |
|
r.raise_for_status() |
|
with open(load_model_path, "wb") as f: |
|
for chunk in r.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
print("Download complete.") |
|
|
|
print(f"Loading model from {load_model_path}...") |
|
loaded_autoencoder = tf.keras.models.load_model( |
|
load_model_path, |
|
custom_objects={'SpatialAttention': SpatialAttention} |
|
) |
|
|
|
def process_image(input_img): |
|
|
|
original_width, original_height = input_img.size |
|
|
|
|
|
img = input_img.convert("L") |
|
img = img.resize((WIDTH, HEIGHT)) |
|
img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0 |
|
img_array = img_array[None, ..., 0:1] |
|
|
|
|
|
output_array = loaded_autoencoder.predict(img_array) |
|
print("output_array shape: ", output_array.shape) |
|
|
|
|
|
L_channel = img_array[0, :, :, 0] * 100.0 |
|
ab_channels = output_array[0] * 128.0 |
|
|
|
|
|
lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1) |
|
|
|
|
|
rgb_array = lab2rgb(lab_image) |
|
rgb_array = np.clip(rgb_array, 0, 1) * 255.0 |
|
rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB") |
|
|
|
|
|
rgb_image = rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS) |
|
|
|
return rgb_image |
|
|
|
custom_css = """ |
|
body {background: linear-gradient(135deg, #f0f4f8 0%, #d9e2ec 100%) !important;} |
|
.gradio-container {background: transparent !important;} |
|
h1, .gr-title {color: #007bff !important; font-family: 'Segoe UI', sans-serif;} |
|
.gr-description {color: #333333 !important; font-size: 1.1em;} |
|
.gr-input, .gr-output {border-radius: 18px !important; box-shadow: 0 4px 24px rgba(0,0,0,0.1);} |
|
.gr-button {background: linear-gradient(90deg, #007bff 0%, #00c4cc 100%) !important; color: #fff !important; border: none !important; border-radius: 12px !important;} |
|
""" |
|
|
|
demo = gr.Interface( |
|
fn=process_image, |
|
inputs=gr.Image(type="pil", label="Upload Grayscale Landscape", image_mode="L"), |
|
outputs=gr.Image(type="pil", label="Colorized Output"), |
|
title="π Gray2Color Landscape Autoencoder", |
|
description=( |
|
"<div style='font-size:1.15em;line-height:1.6em;'>" |
|
"Transform your <b>grayscale landscape</b> photos into vivid color with a state-of-the-art autoencoder.<br>" |
|
"Simply upload a grayscale image and see the magic happen!" |
|
"</div>" |
|
), |
|
theme="soft", |
|
css=custom_css, |
|
allow_flagging="never", |
|
examples=[ |
|
["examples/example_input_1.jpg", "examples/example_output_1.jpg"], |
|
["examples/example_input_2.jpg", "examples/example_output_2.jpg"] |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |