|
import gradio as gr
|
|
from PIL import Image
|
|
import os
|
|
import tensorflow as tf
|
|
import requests
|
|
|
|
from .models.auto_encoder_gray2color import SpatialAttention
|
|
|
|
|
|
load_model_path = "./ckpts/best_model.h5"
|
|
if not os.path.exists(load_model_path):
|
|
os.makedirs(os.path.dirname(load_model_path), exist_ok=True)
|
|
url = "https://huggingface.co/danhtran2mind/autoencoder-grayscale-to-color-landscape/resolve/main/ckpts/best_model.h5"
|
|
print(f"Downloading model from {url}...")
|
|
with requests.get(url, stream=True) as r:
|
|
r.raise_for_status()
|
|
with open(load_model_path, "wb") as f:
|
|
for chunk in r.iter_content(chunk_size=8192):
|
|
f.write(chunk)
|
|
print("Download complete.")
|
|
|
|
print(f"Loading model from {load_model_path}...")
|
|
loaded_autoencoder = tf.keras.models.load_model(
|
|
load_model_path,
|
|
custom_objects={'SpatialAttention': SpatialAttention}
|
|
)
|
|
|
|
def process_image(input_img):
|
|
|
|
img = input_img.convert("RGB")
|
|
img = img.resize((256, 256))
|
|
img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0
|
|
img_array = img_array[None, ...]
|
|
|
|
|
|
output_array = loaded_autoencoder.predict(img_array)
|
|
output_img = tf.keras.preprocessing.image.array_to_img(output_array[0])
|
|
|
|
return output_img
|
|
|
|
custom_css = """
|
|
body {background: linear-gradient(135deg, #232526 0%, #414345 100%) !important;}
|
|
.gradio-container {background: transparent !important;}
|
|
h1, .gr-title {color: #00e6d3 !important; font-family: 'Segoe UI', sans-serif;}
|
|
.gr-description {color: #e0e0e0 !important; font-size: 1.1em;}
|
|
.gr-input, .gr-output {border-radius: 18px !important; box-shadow: 0 4px 24px rgba(0,0,0,0.18);}
|
|
.gr-button {background: linear-gradient(90deg, #00e6d3 0%, #0072ff 100%) !important; color: #fff !important; border: none !important; border-radius: 12px !important;}
|
|
"""
|
|
|
|
demo = gr.Interface(
|
|
fn=process_image,
|
|
inputs=gr.Image(type="pil", label="Upload Grayscale Landscape", image_mode="L", shape=(256, 256)),
|
|
outputs=gr.Image(type="pil", label="Colorized Output"),
|
|
title="π Gray2Color Landscape Autoencoder",
|
|
description=(
|
|
"<div style='font-size:1.15em;line-height:1.6em;'>"
|
|
"Transform your <b>grayscale landscape</b> photos into vivid color with a state-of-the-art autoencoder.<br>"
|
|
"Simply upload a grayscale image and see the magic happen!"
|
|
"</div>"
|
|
),
|
|
theme="soft",
|
|
css=custom_css,
|
|
allow_flagging="never",
|
|
examples=[
|
|
["examples/grayscale_landscape1.jpg"],
|
|
["examples/grayscale_landscape2.jpg"]
|
|
]
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch() |