Dan Walsh
commited on
Commit
·
b089011
1
Parent(s):
9e707a5
Updates to hugging face spaces config
Browse files- .env +3 -0
- Dockerfile +9 -0
- README.md +10 -5
- app/services/summariser.py +128 -83
- main.py +14 -4
.env
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
TRANSFORMERS_CACHE=/tmp/huggingface_cache
|
2 |
+
HF_HOME=/tmp/huggingface_cache
|
3 |
+
HUGGINGFACE_HUB_CACHE=/tmp/huggingface_cache
|
Dockerfile
CHANGED
@@ -2,6 +2,15 @@ FROM python:3.9-slim
|
|
2 |
|
3 |
WORKDIR /app
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# Copy requirements first for better caching
|
6 |
COPY requirements.txt .
|
7 |
RUN pip install --no-cache-dir -r requirements.txt
|
|
|
2 |
|
3 |
WORKDIR /app
|
4 |
|
5 |
+
# Create a writable cache directory
|
6 |
+
RUN mkdir -p /tmp/huggingface_cache && \
|
7 |
+
chmod 777 /tmp/huggingface_cache
|
8 |
+
|
9 |
+
# Set environment variables for model caching
|
10 |
+
ENV TRANSFORMERS_CACHE=/tmp/huggingface_cache
|
11 |
+
ENV HF_HOME=/tmp/huggingface_cache
|
12 |
+
ENV HUGGINGFACE_HUB_CACHE=/tmp/huggingface_cache
|
13 |
+
|
14 |
# Copy requirements first for better caching
|
15 |
COPY requirements.txt .
|
16 |
RUN pip install --no-cache-dir -r requirements.txt
|
README.md
CHANGED
@@ -136,11 +136,16 @@ See the deployment guide in the frontend repository for detailed instructions on
|
|
136 |
|
137 |
### Deploying to Hugging Face Spaces
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
- `
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
## Performance Optimizations
|
146 |
|
|
|
136 |
|
137 |
### Deploying to Hugging Face Spaces
|
138 |
|
139 |
+
When deploying to Hugging Face Spaces, make sure to:
|
140 |
+
|
141 |
+
1. Set the following environment variables in the Space settings:
|
142 |
+
- `TRANSFORMERS_CACHE=/tmp/huggingface_cache`
|
143 |
+
- `HF_HOME=/tmp/huggingface_cache`
|
144 |
+
- `HUGGINGFACE_HUB_CACHE=/tmp/huggingface_cache`
|
145 |
+
|
146 |
+
2. Use the Docker SDK in your Space settings
|
147 |
+
|
148 |
+
3. If you encounter memory issues, consider using a smaller model by changing the `model_name` in `summariser.py`
|
149 |
|
150 |
## Performance Optimizations
|
151 |
|
app/services/summariser.py
CHANGED
@@ -2,6 +2,7 @@ import numpy as np # Import NumPy first
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import time
|
|
|
5 |
import re
|
6 |
|
7 |
class SummariserService:
|
@@ -15,35 +16,74 @@ class SummariserService:
|
|
15 |
|
16 |
# Consider these alternative models
|
17 |
model_options = {
|
18 |
-
"general": "facebook/bart-large-cnn",
|
19 |
-
"news": "facebook/bart-large-xsum",
|
20 |
-
"long_form": "google/pegasus-large",
|
21 |
-
"literary": "t5-large"
|
22 |
}
|
23 |
|
24 |
-
# Choose the most appropriate model
|
25 |
-
model_name = model_options["
|
26 |
|
27 |
# Update loading status
|
28 |
self.model_loading_status["is_loading"] = True
|
29 |
self.model_loading_status["step"] = "Initializing tokenizer"
|
30 |
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
self.model_loading_status["is_loading"] = False
|
45 |
self.model_loading_status["progress"] = 100
|
46 |
|
|
|
|
|
|
|
47 |
# Track current processing job
|
48 |
self.current_job = {
|
49 |
"in_progress": False,
|
@@ -54,28 +94,6 @@ class SummariserService:
|
|
54 |
"progress": 0
|
55 |
}
|
56 |
|
57 |
-
def get_status(self):
|
58 |
-
"""Return the current status of the summarizer service"""
|
59 |
-
status = {
|
60 |
-
"model_loading": self.model_loading_status,
|
61 |
-
"device": self.device,
|
62 |
-
"current_job": self.current_job
|
63 |
-
}
|
64 |
-
|
65 |
-
# Update estimated time remaining if job in progress
|
66 |
-
if self.current_job["in_progress"] and self.current_job["start_time"]:
|
67 |
-
elapsed = time.time() - self.current_job["start_time"]
|
68 |
-
estimated = self.current_job["estimated_time"]
|
69 |
-
remaining = max(0, estimated - elapsed)
|
70 |
-
status["current_job"]["time_remaining"] = round(remaining, 1)
|
71 |
-
|
72 |
-
# Update progress based on time
|
73 |
-
if estimated > 0:
|
74 |
-
progress = min(95, (elapsed / estimated) * 100)
|
75 |
-
status["current_job"]["progress"] = round(progress, 0)
|
76 |
-
|
77 |
-
return status
|
78 |
-
|
79 |
def clean_summary(self, summary):
|
80 |
"""Clean and format the summary text"""
|
81 |
# Remove any leading punctuation or spaces
|
@@ -99,6 +117,28 @@ class SummariserService:
|
|
99 |
|
100 |
return summary
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def summarise(self, text, max_length=250, min_length=100, do_sample=True, temperature=1.2):
|
103 |
"""
|
104 |
Summarise the given text using the loaded model.
|
@@ -128,54 +168,59 @@ class SummariserService:
|
|
128 |
"metadata": {
|
129 |
"input_word_count": self.current_job["input_word_count"],
|
130 |
"estimated_time_seconds": self.current_job["estimated_time"],
|
131 |
-
"model_used":
|
132 |
"processing_device": self.device
|
133 |
}
|
134 |
}
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
return result
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import time
|
5 |
+
import os
|
6 |
import re
|
7 |
|
8 |
class SummariserService:
|
|
|
16 |
|
17 |
# Consider these alternative models
|
18 |
model_options = {
|
19 |
+
"general": "facebook/bart-large-cnn",
|
20 |
+
"news": "facebook/bart-large-xsum",
|
21 |
+
"long_form": "google/pegasus-large",
|
22 |
+
"literary": "t5-large"
|
23 |
}
|
24 |
|
25 |
+
# Choose the most appropriate model
|
26 |
+
model_name = model_options["literary"] # Better for literary text
|
27 |
|
28 |
# Update loading status
|
29 |
self.model_loading_status["is_loading"] = True
|
30 |
self.model_loading_status["step"] = "Initializing tokenizer"
|
31 |
|
32 |
+
# Ensure cache directory exists and is writable
|
33 |
+
cache_dir = os.environ.get("TRANSFORMERS_CACHE", "/tmp/huggingface_cache")
|
34 |
+
os.makedirs(cache_dir, exist_ok=True)
|
35 |
|
36 |
+
try:
|
37 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
38 |
+
model_name,
|
39 |
+
cache_dir=cache_dir,
|
40 |
+
local_files_only=False
|
41 |
+
)
|
42 |
+
|
43 |
+
self.model_loading_status["step"] = "Loading model"
|
44 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
45 |
+
model_name,
|
46 |
+
cache_dir=cache_dir,
|
47 |
+
force_download=False,
|
48 |
+
local_files_only=False
|
49 |
+
)
|
50 |
+
|
51 |
+
# Move to GPU if available
|
52 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
53 |
+
self.model.to(self.device)
|
54 |
|
55 |
+
except Exception as e:
|
56 |
+
# Fallback to a smaller model if the main one fails
|
57 |
+
print(f"Error loading model {model_name}: {str(e)}")
|
58 |
+
print("Falling back to smaller model...")
|
59 |
+
|
60 |
+
fallback_model = "sshleifer/distilbart-cnn-6-6" # Much smaller model
|
61 |
+
|
62 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
63 |
+
fallback_model,
|
64 |
+
cache_dir=cache_dir,
|
65 |
+
local_files_only=False
|
66 |
+
)
|
67 |
+
|
68 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
69 |
+
fallback_model,
|
70 |
+
cache_dir=cache_dir,
|
71 |
+
force_download=False,
|
72 |
+
local_files_only=False
|
73 |
+
)
|
74 |
+
|
75 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
76 |
+
self.model.to(self.device)
|
77 |
+
|
78 |
+
# Update model name for metadata
|
79 |
+
model_name = fallback_model
|
80 |
|
81 |
self.model_loading_status["is_loading"] = False
|
82 |
self.model_loading_status["progress"] = 100
|
83 |
|
84 |
+
# Store the actual model name used
|
85 |
+
self.model_name = model_name
|
86 |
+
|
87 |
# Track current processing job
|
88 |
self.current_job = {
|
89 |
"in_progress": False,
|
|
|
94 |
"progress": 0
|
95 |
}
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
def clean_summary(self, summary):
|
98 |
"""Clean and format the summary text"""
|
99 |
# Remove any leading punctuation or spaces
|
|
|
117 |
|
118 |
return summary
|
119 |
|
120 |
+
def get_status(self):
|
121 |
+
"""Return the current status of the summarizer service"""
|
122 |
+
status = {
|
123 |
+
"model_loading": self.model_loading_status,
|
124 |
+
"device": self.device,
|
125 |
+
"current_job": self.current_job
|
126 |
+
}
|
127 |
+
|
128 |
+
# Update estimated time remaining if job in progress
|
129 |
+
if self.current_job["in_progress"] and self.current_job["start_time"]:
|
130 |
+
elapsed = time.time() - self.current_job["start_time"]
|
131 |
+
estimated = self.current_job["estimated_time"]
|
132 |
+
remaining = max(0, estimated - elapsed)
|
133 |
+
status["current_job"]["time_remaining"] = round(remaining, 1)
|
134 |
+
|
135 |
+
# Update progress based on time
|
136 |
+
if estimated > 0:
|
137 |
+
progress = min(95, (elapsed / estimated) * 100)
|
138 |
+
status["current_job"]["progress"] = round(progress, 0)
|
139 |
+
|
140 |
+
return status
|
141 |
+
|
142 |
def summarise(self, text, max_length=250, min_length=100, do_sample=True, temperature=1.2):
|
143 |
"""
|
144 |
Summarise the given text using the loaded model.
|
|
|
168 |
"metadata": {
|
169 |
"input_word_count": self.current_job["input_word_count"],
|
170 |
"estimated_time_seconds": self.current_job["estimated_time"],
|
171 |
+
"model_used": self.model_name,
|
172 |
"processing_device": self.device
|
173 |
}
|
174 |
}
|
175 |
|
176 |
+
try:
|
177 |
+
# Tokenization step
|
178 |
+
inputs = self.tokenizer(text, return_tensors="pt", max_length=1024, truncation=True)
|
179 |
+
input_ids = inputs.input_ids.to(self.device)
|
180 |
+
|
181 |
+
# Update metadata with token info
|
182 |
+
result["metadata"]["input_token_count"] = len(input_ids[0])
|
183 |
+
result["metadata"]["truncated"] = len(input_ids[0]) == 1024
|
184 |
+
|
185 |
+
# Update job status
|
186 |
+
self.current_job["stage"] = "Generating summary"
|
187 |
+
self.current_job["progress"] = 30
|
188 |
+
|
189 |
+
# Enhanced generation parameters
|
190 |
+
summary_ids = self.model.generate(
|
191 |
+
input_ids,
|
192 |
+
max_length=max_length,
|
193 |
+
min_length=min_length,
|
194 |
+
do_sample=do_sample,
|
195 |
+
temperature=temperature,
|
196 |
+
num_beams=4,
|
197 |
+
early_stopping=True,
|
198 |
+
no_repeat_ngram_size=3,
|
199 |
+
length_penalty=2.0,
|
200 |
+
)
|
201 |
+
|
202 |
+
# Update job status
|
203 |
+
self.current_job["stage"] = "Post-processing summary"
|
204 |
+
self.current_job["progress"] = 90
|
205 |
+
|
206 |
+
summary = self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
207 |
+
|
208 |
+
# Clean and format the summary
|
209 |
+
summary = self.clean_summary(summary)
|
210 |
+
|
211 |
+
result["summary"] = summary
|
212 |
+
result["metadata"]["output_word_count"] = len(summary.split())
|
213 |
+
result["metadata"]["compression_ratio"] = round(len(summary.split()) / self.current_job["input_word_count"] * 100, 1)
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
# Handle errors gracefully
|
217 |
+
print(f"Error during summarization: {str(e)}")
|
218 |
+
result["summary"] = "An error occurred during summarization. Please try again with a shorter text or different parameters."
|
219 |
+
result["error"] = str(e)
|
220 |
+
finally:
|
221 |
+
# Complete job
|
222 |
+
self.current_job["in_progress"] = False
|
223 |
+
self.current_job["stage"] = "Complete"
|
224 |
+
self.current_job["progress"] = 100
|
225 |
|
226 |
return result
|
main.py
CHANGED
@@ -1,18 +1,28 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
app = FastAPI(title="AI Content Summariser API")
|
6 |
|
7 |
-
# Configure CORS
|
8 |
app.add_middleware(
|
9 |
CORSMiddleware,
|
10 |
-
allow_origins=["
|
11 |
allow_credentials=True,
|
12 |
allow_methods=["*"],
|
13 |
allow_headers=["*"],
|
14 |
)
|
15 |
|
|
|
16 |
app.include_router(api_router)
|
17 |
|
18 |
@app.get("/health")
|
@@ -21,4 +31,4 @@ async def health_check():
|
|
21 |
|
22 |
if __name__ == "__main__":
|
23 |
import uvicorn
|
24 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Import the router from the correct location
|
6 |
+
# Check which router file exists and use that one
|
7 |
+
if os.path.exists("app/api/routes.py"):
|
8 |
+
from app.api.routes import router as api_router
|
9 |
+
elif os.path.exists("app/routers/api.py"):
|
10 |
+
from app.routers.api import router as api_router
|
11 |
+
else:
|
12 |
+
raise ImportError("Could not find router file")
|
13 |
|
14 |
app = FastAPI(title="AI Content Summariser API")
|
15 |
|
16 |
+
# Configure CORS - allow requests from the frontend
|
17 |
app.add_middleware(
|
18 |
CORSMiddleware,
|
19 |
+
allow_origins=["*"], # For development - restrict this in production
|
20 |
allow_credentials=True,
|
21 |
allow_methods=["*"],
|
22 |
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
+
# Include the router
|
26 |
app.include_router(api_router)
|
27 |
|
28 |
@app.get("/health")
|
|
|
31 |
|
32 |
if __name__ == "__main__":
|
33 |
import uvicorn
|
34 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000)))
|