Spaces:
Sleeping
Sleeping
# β SmartManuals-AI: Hugging Face Space App (RAM Safe, Multi-model, No Preview) | |
import os, json, fitz, torch, chromadb, docx | |
import gradio as gr | |
from PIL import Image | |
from nltk.tokenize import sent_tokenize | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from tqdm import tqdm | |
# --------------------------- | |
# βοΈ Constants | |
# --------------------------- | |
MANUALS_DIR = "Manuals" | |
CHROMA_PATH = "./chroma_store" | |
CHUNKS_JSONL = "manual_chunks.jsonl" | |
COLLECTION_NAME = "manual_chunks" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
CHUNK_SIZE = 750 | |
CHUNK_OVERLAP = 100 | |
TOP_K = 3 | |
MODEL_OPTIONS = { | |
"LLaMA 3.1 (8B)": "meta-llama/Llama-3.1-8B-Instruct", | |
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3", | |
"Gemma 7B": "google/gemma-7b-it", | |
"Qwen3 7B": "Qwen/Qwen1.5-7B-Chat" | |
} | |
# --------------------------- | |
# π Extract Text from PDFs and DOCX | |
# --------------------------- | |
def extract_text_from_pdf(path): | |
text = "" | |
try: | |
doc = fitz.open(path) | |
for page in doc: | |
page_text = page.get_text() | |
text += page_text + "\n" | |
doc.close() | |
except Exception as e: | |
print(f"β PDF Error in {path}: {e}") | |
return text | |
def extract_text_from_docx(path): | |
try: | |
doc = docx.Document(path) | |
return "\n".join(p.text for p in doc.paragraphs if p.text.strip()) | |
except Exception as e: | |
print(f"β DOCX Error in {path}: {e}") | |
return "" | |
# --------------------------- | |
# π§Ή Clean + Chunk | |
# --------------------------- | |
def clean(text): | |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()]) | |
def split_sentences(text): | |
return sent_tokenize(text) | |
def chunk_text(sentences, size=CHUNK_SIZE, overlap=CHUNK_OVERLAP): | |
chunks, chunk, length = [], [], 0 | |
for sent in sentences: | |
n = len(sent.split()) | |
if length + n > size: | |
if chunk: | |
chunks.append(" ".join(chunk)) | |
chunk = chunk[-overlap:] | |
length = sum(len(s.split()) for s in chunk) | |
chunk.append(sent) | |
length += n | |
if chunk: | |
chunks.append(" ".join(chunk)) | |
return chunks | |
# --------------------------- | |
# π¦ Embed and Store in Chroma | |
# --------------------------- | |
def embed_all(): | |
print("π Scanning manuals and embedding...") | |
os.makedirs(CHROMA_PATH, exist_ok=True) | |
embedder = SentenceTransformer("all-MiniLM-L6-v2") | |
client = chromadb.PersistentClient(path=CHROMA_PATH) | |
if COLLECTION_NAME in [c.name for c in client.list_collections()]: | |
client.delete_collection(COLLECTION_NAME) | |
collection = client.create_collection(COLLECTION_NAME) | |
all_chunks = [] | |
files = [f for f in os.listdir(MANUALS_DIR) if f.lower().endswith((".pdf", ".docx"))] | |
for fname in tqdm(files): | |
path = os.path.join(MANUALS_DIR, fname) | |
text = extract_text_from_pdf(path) if fname.endswith(".pdf") else extract_text_from_docx(path) | |
text = clean(text) | |
sents = split_sentences(text) | |
chunks = chunk_text(sents) | |
for i, chunk in enumerate(chunks): | |
all_chunks.append({ | |
"id": f"{fname}::chunk_{i+1}", | |
"text": chunk, | |
"metadata": {"source": fname} | |
}) | |
# Batch embed and store | |
for i in range(0, len(all_chunks), 16): | |
batch = all_chunks[i:i+16] | |
docs = [c["text"] for c in batch] | |
ids = [c["id"] for c in batch] | |
metas = [c["metadata"] for c in batch] | |
embs = embedder.encode(docs).tolist() | |
collection.add(documents=docs, ids=ids, metadatas=metas, embeddings=embs) | |
print(f"β Embedded {len(all_chunks)} chunks.") | |
return collection, embedder | |
# --------------------------- | |
# π RAG Search & LLM Answer | |
# --------------------------- | |
def ask(query, model_key): | |
model_id = MODEL_OPTIONS[model_key] | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained(model_id, token=HF_TOKEN, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32) | |
model.to("cuda" if torch.cuda.is_available() else "cpu") | |
gen = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) | |
except Exception as e: | |
return f"β Model loading failed: {e}" | |
results = db.query(query_texts=[query], n_results=TOP_K) | |
chunks = results["documents"][0] | |
context = "\n\n".join(chunks) | |
prompt = f"Answer this using only the context below.\n\nContext:\n{context}\n\nQuestion: {query}\nAnswer:" | |
try: | |
res = gen(prompt, max_new_tokens=300, do_sample=False)[0]['generated_text'] | |
return res.split("Answer:", 1)[-1].strip() | |
except Exception as e: | |
return f"β LLM failed: {e}" | |
# --------------------------- | |
# βΆοΈ UI | |
# --------------------------- | |
db, embedder = embed_all() | |
with gr.Blocks() as demo: | |
gr.Markdown("## π§ SmartManuals-AI β Ask Your PDF and Word Docs") | |
with gr.Row(): | |
qbox = gr.Textbox(label="Ask a Question", placeholder="e.g. How do I calibrate SE3 console?") | |
model_pick = gr.Dropdown(choices=list(MODEL_OPTIONS.keys()), label="Choose a Model", value="Mistral 7B") | |
answer = gr.Textbox(label="Answer", lines=8) | |
ask_btn = gr.Button("Ask") | |
ask_btn.click(fn=ask, inputs=[qbox, model_pick], outputs=[answer]) | |
demo.launch() | |