import os import gradio as gr import requests import pandas as pd # --- LangChain & Dependency Imports --- from groq import Groq from langchain_groq import ChatGroq from langchain.agents import AgentExecutor, create_tool_calling_agent from langchain_tavily import TavilySearch from langchain_core.prompts import ChatPromptTemplate from langchain.tools import Tool # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Agent Definition --- class SimpleAgent: def __init__(self, groq_api_key: str, tavily_api_key: str): print("Initializing SimpleAgent...") self.llm = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key, temperature=0.0) # The agent has ONLY ONE tool: web_search self.tools = [ TavilySearch(name="web_search", max_results=3, tavily_api_key=tavily_api_key, description="A search engine for finding up-to-date information on the internet."), ] # A simple, direct prompt prompt = ChatPromptTemplate.from_messages([ ("system", ( "You are a helpful assistant. You have access to one tool: a web search engine. " "Use it when you need to find current information or facts. " "After using the tool, provide ONLY the final, concise answer." )), ("human", "{input}"), ("placeholder", "{agent_scratchpad}"), ]) agent = create_tool_calling_agent(self.llm, self.tools, prompt) self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True) print("SimpleAgent Initialized.") def __call__(self, question: str) -> str: print(f"Agent received question: {question[:50]}...") try: response = self.agent_executor.invoke({"input": question}) return response.get("output", "Agent failed to produce an answer.") except Exception as e: return f"Agent execution failed with an error: {e}" # --- Main Application Logic --- def run_and_submit_all(profile: gr.OAuthProfile | None): space_id = os.getenv("SPACE_ID") if not profile: return "Please Login to Hugging Face with the button.", None username = profile.username print(f"User logged in: {username}") try: groq_api_key = os.getenv("GROQ_API_KEY") tavily_api_key = os.getenv("TAVILY_API_KEY") if not all([groq_api_key, tavily_api_key]): raise ValueError("GROQ or TAVILY API key is missing.") agent = SimpleAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key) except Exception as e: return f"Error initializing agent: {e}", None questions_url = f"{DEFAULT_API_URL}/questions" try: response = requests.get(questions_url, timeout=20) response.raise_for_status() questions_data = response.json() except Exception as e: return f"Error fetching questions: {e}", None results_log, answers_payload = [], [] for item in questions_data: task_id, q_text = item.get("task_id"), item.get("question") if not task_id or not q_text: continue answer = agent(question=q_text) answers_payload.append({"task_id": task_id, "submitted_answer": answer}) results_log.append({"Task ID": task_id, "Question": q_text, "Submitted Answer": answer}) agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} submit_url = f"{DEFAULT_API_URL}/submit" try: response = requests.post(submit_url, json=submission_data, timeout=300) response.raise_for_status() result_data = response.json() final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}") return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Simple Agent Runner (Web Search Only)") gr.Markdown("This agent can only search the web. Let's establish a stable baseline.") gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) for key in ["GROQ_API_KEY", "TAVILY_API_KEY"]: print(f"✅ {key} secret is set." if os.getenv(key) else f"⚠️ WARNING: {key} secret is not set.") print("-"*(60 + len(" App Starting ")) + "\n") demo.launch(debug=True, share=False)