Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,14 @@ import requests
|
|
4 |
import pandas as pd
|
5 |
from io import BytesIO
|
6 |
import re
|
|
|
|
|
7 |
|
8 |
-
# ---
|
9 |
from pytube import YouTube
|
10 |
-
|
11 |
|
12 |
-
# --- LangChain &
|
13 |
from groq import Groq
|
14 |
from langchain_groq import ChatGroq
|
15 |
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
@@ -17,18 +19,13 @@ from langchain_tavily import TavilySearchResults
|
|
17 |
from langchain_core.prompts import ChatPromptTemplate
|
18 |
from langchain.tools import Tool
|
19 |
|
20 |
-
|
21 |
# --- Constants ---
|
22 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
23 |
TEMP_DIR = "/tmp"
|
24 |
|
25 |
-
|
26 |
# --- Tool Definition: Audio File Transcription ---
|
27 |
def transcribe_audio_file(task_id: str) -> str:
|
28 |
-
|
29 |
-
Downloads an audio file (.mp3) for a given task_id, transcribes it, and returns the text.
|
30 |
-
Use this tool ONLY when a question explicitly mentions an audio file, .mp3, recording, or voice memo.
|
31 |
-
"""
|
32 |
print(f"Tool 'transcribe_audio_file' called with task_id: {task_id}")
|
33 |
try:
|
34 |
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
|
@@ -36,31 +33,25 @@ def transcribe_audio_file(task_id: str) -> str:
|
|
36 |
audio_response.raise_for_status()
|
37 |
audio_bytes = BytesIO(audio_response.content)
|
38 |
audio_bytes.name = f"{task_id}.mp3"
|
39 |
-
|
40 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
41 |
transcription = client.audio.transcriptions.create(file=audio_bytes, model="whisper-large-v3", response_format="text")
|
42 |
return str(transcription)
|
43 |
except Exception as e:
|
44 |
return f"Error during audio file transcription: {e}"
|
45 |
|
46 |
-
# --- Tool Definition: Video Transcription ---
|
47 |
def transcribe_youtube_video(video_url: str) -> str:
|
48 |
-
|
49 |
-
|
50 |
-
Use this tool ONLY when a question provides a youtube.com URL.
|
51 |
-
"""
|
52 |
-
print(f"Tool 'transcribe_youtube_video' called with URL: {video_url}")
|
53 |
video_path, audio_path = None, None
|
54 |
try:
|
55 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
56 |
yt = YouTube(video_url)
|
57 |
-
stream = yt.streams.filter(
|
58 |
video_path = stream.download(output_path=TEMP_DIR)
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
video_clip.audio.write_audiofile(audio_path, codec='mp3', logger=None)
|
63 |
-
|
64 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
65 |
with open(audio_path, "rb") as audio_file:
|
66 |
transcription = client.audio.transcriptions.create(file=audio_file, model="whisper-large-v3", response_format="text")
|
@@ -71,43 +62,61 @@ def transcribe_youtube_video(video_url: str) -> str:
|
|
71 |
if video_path and os.path.exists(video_path): os.remove(video_path)
|
72 |
if audio_path and os.path.exists(audio_path): os.remove(audio_path)
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# --- Agent Definition ---
|
76 |
class LangChainAgent:
|
77 |
-
def __init__(self, groq_api_key: str, tavily_api_key: str):
|
78 |
self.llm = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key, temperature=0.0)
|
79 |
|
80 |
self.tools = [
|
81 |
-
TavilySearchResults(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
description="A search engine for finding up-to-date information, facts, and news on the internet."
|
86 |
-
),
|
87 |
-
Tool(
|
88 |
-
name="audio_file_transcriber",
|
89 |
-
func=transcribe_audio_file,
|
90 |
-
description="Use this ONLY for questions mentioning an audio file (.mp3, recording). Input MUST be the task_id.",
|
91 |
-
),
|
92 |
-
Tool(
|
93 |
-
name="youtube_video_transcriber",
|
94 |
-
func=transcribe_youtube_video,
|
95 |
-
description="Use this ONLY for questions providing a youtube.com URL. Input MUST be the URL.",
|
96 |
-
),
|
97 |
]
|
98 |
|
99 |
prompt = ChatPromptTemplate.from_messages([
|
100 |
("system", (
|
101 |
"You are a powerful problem-solving agent. Your goal is to answer the user's question accurately. "
|
102 |
-
"You have access to a web search tool, an audio file transcriber,
|
103 |
"**REASONING PROCESS:**\n"
|
104 |
-
"1. **Analyze the question:** Is it a general knowledge question, or does it mention a file
|
105 |
-
"2. **Select ONE tool:**\n"
|
106 |
-
" -
|
107 |
-
" -
|
108 |
-
" -
|
109 |
-
" -
|
110 |
-
"
|
|
|
111 |
)),
|
112 |
("human", "Question: {input}\nTask ID: {task_id}"),
|
113 |
("placeholder", "{agent_scratchpad}"),
|
@@ -121,7 +130,6 @@ class LangChainAgent:
|
|
121 |
input_for_agent = {"input": question, "task_id": task_id}
|
122 |
if urls and "youtube.com" in urls[0]:
|
123 |
input_for_agent['video_url'] = urls[0]
|
124 |
-
|
125 |
try:
|
126 |
response = self.agent_executor.invoke(input_for_agent)
|
127 |
return response.get("output", "Agent failed to produce an answer.")
|
@@ -136,8 +144,9 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
136 |
try:
|
137 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
138 |
tavily_api_key = os.getenv("TAVILY_API_KEY")
|
139 |
-
|
140 |
-
|
|
|
141 |
except Exception as e: return f"Error initializing agent: {e}", None
|
142 |
|
143 |
questions_url = f"{DEFAULT_API_URL}/questions"
|
@@ -171,8 +180,8 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
171 |
|
172 |
# --- Gradio Interface ---
|
173 |
with gr.Blocks() as demo:
|
174 |
-
gr.Markdown("# Ultimate Agent Runner (Search
|
175 |
-
gr.Markdown("This agent can search, transcribe audio files,
|
176 |
gr.LoginButton()
|
177 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
178 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
@@ -181,7 +190,7 @@ with gr.Blocks() as demo:
|
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
184 |
-
for key in ["GROQ_API_KEY", "TAVILY_API_KEY"]:
|
185 |
print(f"✅ {key} secret is set." if os.getenv(key) else f"⚠️ WARNING: {key} secret is not set.")
|
186 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
187 |
demo.launch(debug=True, share=False)
|
|
|
4 |
import pandas as pd
|
5 |
from io import BytesIO
|
6 |
import re
|
7 |
+
import subprocess
|
8 |
+
import base64
|
9 |
|
10 |
+
# --- Tool-specific Imports ---
|
11 |
from pytube import YouTube
|
12 |
+
from langchain_huggingface import HuggingFaceInferenceAPI
|
13 |
|
14 |
+
# --- LangChain & Groq Imports ---
|
15 |
from groq import Groq
|
16 |
from langchain_groq import ChatGroq
|
17 |
from langchain.agents import AgentExecutor, create_tool_calling_agent
|
|
|
19 |
from langchain_core.prompts import ChatPromptTemplate
|
20 |
from langchain.tools import Tool
|
21 |
|
|
|
22 |
# --- Constants ---
|
23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
24 |
TEMP_DIR = "/tmp"
|
25 |
|
|
|
26 |
# --- Tool Definition: Audio File Transcription ---
|
27 |
def transcribe_audio_file(task_id: str) -> str:
|
28 |
+
# (This function is complete and correct from the previous version)
|
|
|
|
|
|
|
29 |
print(f"Tool 'transcribe_audio_file' called with task_id: {task_id}")
|
30 |
try:
|
31 |
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
|
|
|
33 |
audio_response.raise_for_status()
|
34 |
audio_bytes = BytesIO(audio_response.content)
|
35 |
audio_bytes.name = f"{task_id}.mp3"
|
|
|
36 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
37 |
transcription = client.audio.transcriptions.create(file=audio_bytes, model="whisper-large-v3", response_format="text")
|
38 |
return str(transcription)
|
39 |
except Exception as e:
|
40 |
return f"Error during audio file transcription: {e}"
|
41 |
|
42 |
+
# --- Tool Definition: Video Transcription via FFmpeg ---
|
43 |
def transcribe_youtube_video(video_url: str) -> str:
|
44 |
+
# (This function is complete and correct from the previous version)
|
45 |
+
print(f"Tool 'transcribe_youtube_video' (ffmpeg) called with URL: {video_url}")
|
|
|
|
|
|
|
46 |
video_path, audio_path = None, None
|
47 |
try:
|
48 |
os.makedirs(TEMP_DIR, exist_ok=True)
|
49 |
yt = YouTube(video_url)
|
50 |
+
stream = yt.streams.filter(only_audio=True).first()
|
51 |
video_path = stream.download(output_path=TEMP_DIR)
|
52 |
+
audio_path = os.path.join(TEMP_DIR, "output.mp3")
|
53 |
+
command = ["ffmpeg", "-i", video_path, "-y", "-q:a", "0", "-map", "a", audio_path]
|
54 |
+
subprocess.run(command, check=True, capture_output=True, text=True)
|
|
|
|
|
55 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
56 |
with open(audio_path, "rb") as audio_file:
|
57 |
transcription = client.audio.transcriptions.create(file=audio_file, model="whisper-large-v3", response_format="text")
|
|
|
62 |
if video_path and os.path.exists(video_path): os.remove(video_path)
|
63 |
if audio_path and os.path.exists(audio_path): os.remove(audio_path)
|
64 |
|
65 |
+
# --- NEW TOOL Definition: Image Analysis ---
|
66 |
+
def analyze_image_from_task_id(task_id: str) -> str:
|
67 |
+
"""
|
68 |
+
Downloads an image file for a given task_id and analyzes it using a Vision-Language Model.
|
69 |
+
Use this tool ONLY when a question explicitly mentions an image.
|
70 |
+
"""
|
71 |
+
print(f"Tool 'analyze_image_from_task_id' called with task_id: {task_id}")
|
72 |
+
try:
|
73 |
+
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
|
74 |
+
print(f"Downloading image from: {file_url}")
|
75 |
+
response = requests.get(file_url)
|
76 |
+
response.raise_for_status()
|
77 |
+
|
78 |
+
# Initialize the VLM client
|
79 |
+
vlm_client = HuggingFaceInferenceAPI(
|
80 |
+
model_id="llava-hf/llava-1.5-7b-hf",
|
81 |
+
token=os.getenv("HF_TOKEN")
|
82 |
+
)
|
83 |
+
|
84 |
+
print("Analyzing image with Llava...")
|
85 |
+
# The prompt for the VLM needs to be specific.
|
86 |
+
# We can just ask it to describe the image in detail.
|
87 |
+
text_prompt = "Describe the image in detail."
|
88 |
+
result = vlm_client.image_to_text(image=response.content, prompt=text_prompt)
|
89 |
+
print(f"Image analysis successful. Result: {result}")
|
90 |
+
return result
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
return f"Error during image analysis: {e}"
|
94 |
|
95 |
# --- Agent Definition ---
|
96 |
class LangChainAgent:
|
97 |
+
def __init__(self, groq_api_key: str, tavily_api_key: str, hf_token: str):
|
98 |
self.llm = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key, temperature=0.0)
|
99 |
|
100 |
self.tools = [
|
101 |
+
TavilySearchResults(name="web_search", max_results=3, tavily_api_key=tavily_api_key, description="A search engine for finding up-to-date information on the internet."),
|
102 |
+
Tool(name="audio_file_transcriber", func=transcribe_audio_file, description="Use this for questions mentioning an audio file (.mp3, recording). Input MUST be the task_id."),
|
103 |
+
Tool(name="youtube_video_transcriber", func=transcribe_youtube_video, description="Use this for questions with a youtube.com URL. Input MUST be the URL."),
|
104 |
+
Tool(name="image_analyzer", func=analyze_image_from_task_id, description="Use this for questions mentioning an image. Input MUST be the task_id."),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
]
|
106 |
|
107 |
prompt = ChatPromptTemplate.from_messages([
|
108 |
("system", (
|
109 |
"You are a powerful problem-solving agent. Your goal is to answer the user's question accurately. "
|
110 |
+
"You have access to a web search tool, an audio file transcriber, a YouTube video transcriber, and an image analyzer.\n\n"
|
111 |
"**REASONING PROCESS:**\n"
|
112 |
+
"1. **Analyze the question:** Determine if a tool is needed. Is it a general knowledge question, or does it mention a specific file type (audio, video, image) or URL?\n"
|
113 |
+
"2. **Select ONE tool based on the question:**\n"
|
114 |
+
" - For general knowledge, facts, or current events: use `web_search`.\n"
|
115 |
+
" - For an audio file, .mp3, or voice memo: use `audio_file_transcriber` with the `task_id`.\n"
|
116 |
+
" - For a youtube.com URL: use `youtube_video_transcriber` with the URL.\n"
|
117 |
+
" - For an image: use `image_analyzer` with the `task_id`.\n"
|
118 |
+
" - For math or simple logic: answer directly.\n"
|
119 |
+
"3. **Execute and Answer:** After using a tool, analyze the result and provide ONLY THE FINAL ANSWER."
|
120 |
)),
|
121 |
("human", "Question: {input}\nTask ID: {task_id}"),
|
122 |
("placeholder", "{agent_scratchpad}"),
|
|
|
130 |
input_for_agent = {"input": question, "task_id": task_id}
|
131 |
if urls and "youtube.com" in urls[0]:
|
132 |
input_for_agent['video_url'] = urls[0]
|
|
|
133 |
try:
|
134 |
response = self.agent_executor.invoke(input_for_agent)
|
135 |
return response.get("output", "Agent failed to produce an answer.")
|
|
|
144 |
try:
|
145 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
146 |
tavily_api_key = os.getenv("TAVILY_API_KEY")
|
147 |
+
hf_token = os.getenv("HF_TOKEN")
|
148 |
+
if not all([groq_api_key, tavily_api_key, hf_token]): raise ValueError("An API key (GROQ, TAVILY, or HF) is missing.")
|
149 |
+
agent = LangChainAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key, hf_token=hf_token)
|
150 |
except Exception as e: return f"Error initializing agent: {e}", None
|
151 |
|
152 |
questions_url = f"{DEFAULT_API_URL}/questions"
|
|
|
180 |
|
181 |
# --- Gradio Interface ---
|
182 |
with gr.Blocks() as demo:
|
183 |
+
gr.Markdown("# Ultimate Agent Runner (Search, Audio, Video, Vision)")
|
184 |
+
gr.Markdown("This agent can search, transcribe audio files, transcribe YouTube videos, and analyze images.")
|
185 |
gr.LoginButton()
|
186 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
187 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
193 |
+
for key in ["GROQ_API_KEY", "TAVILY_API_KEY", "HF_TOKEN"]:
|
194 |
print(f"✅ {key} secret is set." if os.getenv(key) else f"⚠️ WARNING: {key} secret is not set.")
|
195 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
196 |
demo.launch(debug=True, share=False)
|