dalybuilds's picture
Update app.py
95b97f6 verified
raw
history blame
9.76 kB
import os
import gradio as gr
import requests
import pandas as pd
from io import BytesIO
import re
import ffmpeg
from tenacity import retry, stop_after_attempt, wait_fixed
# --- Tool-specific Imports ---
from pytube import YouTube
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound
# --- LangChain & Dependency Imports ---
from groq import Groq
from langchain_groq import ChatGroq
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_tavily import TavilySearch
from langchain_core.prompts import ChatPromptTemplate
from langchain.tools import Tool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
TEMP_DIR = "/tmp"
# --- Tool Definition: Audio File Transcription ---
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def transcribe_audio_file(task_id: str) -> str:
"""
Downloads an audio file (.mp3) for a given task_id, transcribes it, and returns the text.
Use this tool ONLY when a question explicitly mentions an audio file, .mp3, recording, or voice memo.
"""
print(f"Tool 'transcribe_audio_file' called with task_id: {task_id}")
try:
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
audio_response = requests.get(file_url)
audio_response.raise_for_status()
audio_bytes = BytesIO(audio_response.content)
audio_bytes.name = f"{task_id}.mp3"
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
transcription = client.audio.transcriptions.create(file=audio_bytes, model="whisper-large-v3", response_format="text")
return str(transcription)
except Exception as e:
return f"Error during audio file transcription: {e}"
# --- Tool Definition: Video Transcription (prioritizing transcripts) ---
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def transcribe_youtube_video(video_url: str) -> str:
"""
Fetches a transcript for a YouTube video from a URL, falling back to download and transcription if needed.
Use this tool ONLY when a question provides a youtube.com URL.
"""
print(f"Tool 'transcribe_youtube_video' called with URL: {video_url}")
video_path, audio_path = None, None
try:
# Extract video ID and try to fetch official transcript
video_id = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11}).*", video_url).group(1)
transcript = YouTubeTranscriptApi.get_transcript(video_id)
return ' '.join([entry['text'] for entry in transcript])
except NoTranscriptFound:
print("No transcript found; falling back to download and transcribe.")
# Fallback to original download logic
os.makedirs(TEMP_DIR, exist_ok=True)
yt = YouTube(video_url)
stream = yt.streams.filter(only_audio=True).first()
video_path = stream.download(output_path=TEMP_DIR)
audio_path = os.path.join(TEMP_DIR, "output.mp3")
stream = ffmpeg.input(video_path)
stream = ffmpeg.output(stream, audio_path, q=0, map='a', y='y')
ffmpeg.run(stream)
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
with open(audio_path, "rb") as audio_file:
transcription = client.audio.transcriptions.create(file=audio_file, model="whisper-large-v3", response_format="text")
return str(transcription)
except Exception as e:
return f"Error during YouTube transcription: {e}"
finally:
if video_path and os.path.exists(video_path): os.remove(video_path)
if audio_path and os.path.exists(audio_path): os.remove(audio_path)
# --- Agent Definition ---
class LangChainAgent:
def __init__(self, groq_api_key: str, tavily_api_key: str):
self.llm = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key, temperature=0.0)
self.tools = [
TavilySearch(name="web_search", max_results=3, tavily_api_key=tavily_api_key, description="A search engine for finding up-to-date information on the internet."),
Tool(name="audio_file_transcriber", func=transcribe_audio_file, description="Use this for questions mentioning an audio file (.mp3, recording). Input MUST be the task_id."),
Tool(name="youtube_video_transcriber", func=transcribe_youtube_video, description="Use this for questions with a youtube.com URL. Input MUST be the URL."),
]
prompt = ChatPromptTemplate.from_messages([
("system", (
"You are a powerful problem-solving agent. Your goal is to answer the user's question accurately. "
"You have access to a web search tool, an audio file transcriber, and a YouTube video transcriber.\n\n"
"**REASONING PROCESS:**\n"
"1. **Analyze the question:** Determine if a tool is needed. Is it a general knowledge question, or does it mention an audio file or a YouTube URL?\n"
"2. **Select ONE tool based on the question:**\n"
" - For general knowledge, facts, or current events: use `web_search`.\n"
" - For an audio file, .mp3, or voice memo: use `audio_file_transcriber` with the `task_id`.\n"
" - For a youtube.com URL: use `youtube_video_transcriber` with the URL. If transcription fails, fall back to web_search for video transcripts or summaries.\n"
" - For anything else (like images, which you cannot see, or math), you must answer directly without using a tool.\n"
"3. **Handle Errors:** If a tool fails (e.g., download error), retry once or use web_search to find alternatives.\n"
"4. **Execute and Answer:** After using a tool, analyze the result and provide ONLY THE FINAL ANSWER without extra text like 'FINAL ANSWER'."
)),
("human", "Question: {input}\nTask ID: {task_id}"),
("placeholder", "{agent_scratchpad}"),
])
agent = create_tool_calling_agent(self.llm, self.tools, prompt)
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
def __call__(self, question: str, task_id: str) -> str:
urls = re.findall(r'https?://[^\s]+', question)
input_for_agent = {"input": question, "task_id": task_id}
if urls and "youtube.com" in urls[0]:
input_for_agent['video_url'] = urls[0]
try:
response = self.agent_executor.invoke(input_for_agent)
return response.get("output", "Agent failed to produce an answer.")
except Exception as e:
return f"Agent execution failed with an error: {e}"
# --- Main Application Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if not profile: return "Please Login to Hugging Face with the button.", None
username = profile.username
try:
groq_api_key = os.getenv("GROQ_API_KEY")
tavily_api_key = os.getenv("TAVILY_API_KEY")
if not all([groq_api_key, tavily_api_key]): raise ValueError("GROQ or TAVILY API key is missing.")
agent = LangChainAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key)
except Exception as e: return f"Error initializing agent: {e}", None
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
except Exception as e: return f"Error fetching questions: {e}", None
results_log, answers_payload = [], []
for item in questions_data:
task_id, q_text = item.get("task_id"), item.get("question")
if not task_id or not q_text: continue
answer = agent(question=q_text, task_id=task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({"Task ID": task_id, "Question": q_text, "Submitted Answer": answer})
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
submit_url = f"{DEFAULT_API_URL}/submit"
try:
response = requests.post(submit_url, json=submission_data, timeout=300)
response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}")
return final_status, pd.DataFrame(results_log)
except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Ultimate Agent Runner (Search, Audio, Video)")
gr.Markdown("This agent can search, transcribe audio files, and transcribe YouTube videos.")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
for key in ["GROQ_API_KEY", "TAVILY_API_KEY", "SPACE_ID"]:
print(f"✅ {key} secret is set." if os.getenv(key) else f"⚠️ WARNING: {key} secret is not set.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False)