dalybuilds's picture
Update app.py
80e8087 verified
raw
history blame
8.76 kB
import os
import gradio as gr
import requests
import pandas as pd
from io import BytesIO
import re
import subprocess
# --- Tool-specific Imports ---
from pytube import YouTube
# --- LangChain & Groq Imports ---
from groq import Groq
from langchain_groq import ChatGroq
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_tavily import TavilySearchResults
from langchain_core.prompts import ChatPromptTemplate
from langchain.tools import Tool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
TEMP_DIR = "/tmp"
# --- Tool Definition: Audio File Transcription ---
def transcribe_audio_file(task_id: str) -> str:
"""
Downloads an audio file (.mp3) for a given task_id, transcribes it, and returns the text.
Use this tool ONLY when a question explicitly mentions an audio file, .mp3, recording, or voice memo.
"""
print(f"Tool 'transcribe_audio_file' called with task_id: {task_id}")
try:
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
audio_response = requests.get(file_url)
audio_response.raise_for_status()
audio_bytes = BytesIO(audio_response.content)
audio_bytes.name = f"{task_id}.mp3"
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
transcription = client.audio.transcriptions.create(file=audio_bytes, model="whisper-large-v3", response_format="text")
return str(transcription)
except Exception as e:
return f"Error during audio file transcription: {e}"
# --- Tool Definition: Video Transcription (using FFmpeg) ---
def transcribe_youtube_video(video_url: str) -> str:
"""
Downloads a YouTube video from a URL, extracts its audio using FFmpeg, and transcribes it.
Use this tool ONLY when a question provides a youtube.com URL.
"""
print(f"Tool 'transcribe_youtube_video' (ffmpeg) called with URL: {video_url}")
video_path, audio_path = None, None
try:
os.makedirs(TEMP_DIR, exist_ok=True)
yt = YouTube(video_url)
stream = yt.streams.filter(only_audio=True).first()
video_path = stream.download(output_path=TEMP_DIR)
audio_path = os.path.join(TEMP_DIR, "output.mp3")
command = ["ffmpeg", "-i", video_path, "-y", "-q:a", "0", "-map", "a", audio_path]
subprocess.run(command, check=True, capture_output=True, text=True)
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
with open(audio_path, "rb") as audio_file:
transcription = client.audio.transcriptions.create(file=audio_file, model="whisper-large-v3", response_format="text")
return str(transcription)
except Exception as e:
return f"Error during YouTube transcription: {e}"
finally:
if video_path and os.path.exists(video_path): os.remove(video_path)
if audio_path and os.path.exists(audio_path): os.remove(audio_path)
# --- Agent Definition ---
class LangChainAgent:
def __init__(self, groq_api_key: str, tavily_api_key: str):
self.llm = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key, temperature=0.0)
self.tools = [
TavilySearchResults(name="web_search", max_results=3, tavily_api_key=tavily_api_key, description="A search engine for finding up-to-date information on the internet."),
Tool(name="audio_file_transcriber", func=transcribe_audio_file, description="Use this for questions mentioning an audio file (.mp3, recording). Input MUST be the task_id."),
Tool(name="youtube_video_transcriber", func=transcribe_youtube_video, description="Use this for questions with a youtube.com URL. Input MUST be the URL."),
]
prompt = ChatPromptTemplate.from_messages([
("system", (
"You are a powerful problem-solving agent. You have access to a web search tool, an audio file transcriber, and a YouTube video transcriber.\n\n"
"**REASONING PROCESS:**\n"
"1. **Analyze the question:** Determine if a tool is needed. Is it a general knowledge question, or does it mention an audio file or a YouTube URL?\n"
"2. **Select ONE tool based on the question:**\n"
" - For general knowledge, facts, or current events: use `web_search`.\n"
" - For an audio file, .mp3, or voice memo: use `audio_file_transcriber` with the `task_id`.\n"
" - For a youtube.com URL: use `youtube_video_transcriber` with the URL.\n"
" - For anything else (like images, which you cannot see, or math), you must answer directly without using a tool.\n"
"3. **Execute and Answer:** After using a tool, analyze the result and provide ONLY THE FINAL ANSWER."
)),
("human", "Question: {input}\nTask ID: {task_id}"),
("placeholder", "{agent_scratchpad}"),
])
agent = create_tool_calling_agent(self.llm, self.tools, prompt)
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
def __call__(self, question: str, task_id: str) -> str:
urls = re.findall(r'https?://[^\s]+', question)
input_for_agent = {"input": question, "task_id": task_id}
if urls and "youtube.com" in urls[0]:
input_for_agent['video_url'] = urls[0]
try:
response = self.agent_executor.invoke(input_for_agent)
return response.get("output", "Agent failed to produce an answer.")
except Exception as e:
return f"Agent execution failed with an error: {e}"
# --- Main Application Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if not profile: return "Please Login to Hugging Face with the button.", None
username = profile.username
try:
groq_api_key = os.getenv("GROQ_API_KEY")
tavily_api_key = os.getenv("TAVILY_API_KEY")
if not all([groq_api_key, tavily_api_key]): raise ValueError("GROQ or TAVILY API key is missing.")
agent = LangChainAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key)
except Exception as e: return f"Error initializing agent: {e}", None
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
except Exception as e: return f"Error fetching questions: {e}", None
results_log, answers_payload = [], []
for item in questions_data:
task_id, q_text = item.get("task_id"), item.get("question")
if not task_id or not q_text: continue
answer = agent(question=q_text, task_id=task_id)
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({"Task ID": task_id, "Question": q_text, "Submitted Answer": answer})
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
submit_url = f"{DEFAULT_API_URL}/submit"
try:
response = requests.post(submit_url, json=submission_data, timeout=300)
response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}")
return final_status, pd.DataFrame(results_log)
except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Ultimate Agent Runner (Search, Audio, Video)")
gr.Markdown("This agent can search, transcribe audio files, and transcribe YouTube videos.")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
for key in ["GROQ_API_KEY", "TAVILY_API_KEY"]:
print(f"✅ {key} secret is set." if os.getenv(key) else f"⚠️ WARNING: {key} secret is not set.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False)