dalybuilds's picture
Update app.py
9a82dc6 verified
raw
history blame
5.21 kB
import os
import gradio as gr
import requests
import pandas as pd
# --- LangChain & Dependency Imports ---
from groq import Groq
from langchain_groq import ChatGroq
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_tavily import TavilySearch
from langchain_core.prompts import ChatPromptTemplate
from langchain.tools import Tool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Agent Definition ---
class SimpleAgent:
def __init__(self, groq_api_key: str, tavily_api_key: str):
print("Initializing SimpleAgent...")
self.llm = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key, temperature=0.0)
# The agent has ONLY ONE tool: web_search
self.tools = [
TavilySearch(name="web_search", max_results=3, tavily_api_key=tavily_api_key, description="A search engine for finding up-to-date information on the internet."),
]
# A simple, direct prompt
prompt = ChatPromptTemplate.from_messages([
("system", (
"You are a helpful assistant. You have access to one tool: a web search engine. "
"Use it when you need to find current information or facts. "
"After using the tool, provide ONLY the final, concise answer."
)),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
])
agent = create_tool_calling_agent(self.llm, self.tools, prompt)
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True)
print("SimpleAgent Initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:50]}...")
try:
response = self.agent_executor.invoke({"input": question})
return response.get("output", "Agent failed to produce an answer.")
except Exception as e:
return f"Agent execution failed with an error: {e}"
# --- Main Application Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if not profile: return "Please Login to Hugging Face with the button.", None
username = profile.username
print(f"User logged in: {username}")
try:
groq_api_key = os.getenv("GROQ_API_KEY")
tavily_api_key = os.getenv("TAVILY_API_KEY")
if not all([groq_api_key, tavily_api_key]): raise ValueError("GROQ or TAVILY API key is missing.")
agent = SimpleAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key)
except Exception as e: return f"Error initializing agent: {e}", None
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
except Exception as e: return f"Error fetching questions: {e}", None
results_log, answers_payload = [], []
for item in questions_data:
task_id, q_text = item.get("task_id"), item.get("question")
if not task_id or not q_text: continue
answer = agent(question=q_text)
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({"Task ID": task_id, "Question": q_text, "Submitted Answer": answer})
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
submit_url = f"{DEFAULT_API_URL}/submit"
try:
response = requests.post(submit_url, json=submission_data, timeout=300)
response.raise_for_status()
result_data = response.json()
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}")
return final_status, pd.DataFrame(results_log)
except Exception as e: return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Simple Agent Runner (Web Search Only)")
gr.Markdown("This agent can only search the web. Let's establish a stable baseline.")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
for key in ["GROQ_API_KEY", "TAVILY_API_KEY"]:
print(f"✅ {key} secret is set." if os.getenv(key) else f"⚠️ WARNING: {key} secret is not set.")
print("-"*(60 + len(" App Starting ")) + "\n")
demo.launch(debug=True, share=False)