File size: 10,057 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 2a43fe1 10e9b7d e80aab9 3db6293 e80aab9 2a43fe1 31243f4 2a43fe1 4021bf3 2a43fe1 31243f4 2a43fe1 31243f4 7d65c66 b177367 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 2a43fe1 31243f4 2a43fe1 31243f4 3c4371f 31243f4 2a43fe1 36ed51a 2a43fe1 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 2a43fe1 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 2a43fe1 0ee0419 e514fd7 2a43fe1 dec180d e514fd7 2a43fe1 e514fd7 e80aab9 dec180d e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 dec180d 31243f4 e80aab9 3c4371f 2a43fe1 7d65c66 2a43fe1 dec180d 2a43fe1 7d65c66 3c4371f 2a43fe1 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from groq import Groq
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Groq Powered Agent Definition ---
# This new agent uses the Groq API to generate answers.
class GroqAgent:
def __init__(self, api_key):
"""
Initializes the GroqAgent with the Groq API client.
"""
print("Initializing GroqAgent...")
self.client = Groq(api_key=api_key)
print("GroqAgent initialized successfully.")
def __call__(self, question: str) -> str:
"""
This method is called to answer a question using the Groq API.
"""
print(f"GroqAgent received question (first 50 chars): {question[:50]}...")
# A system prompt is used to guide the model to provide concise, direct answers,
# which is ideal for the GAIA benchmark's exact-match scoring.
system_prompt = (
"You are an expert AI agent. Your goal is to answer the following question as accurately "
"and concisely as possible. Provide only the final answer, without any introductory text, "
"explanations, or additional formatting."
)
try:
chat_completion = self.client.chat.completions.create(
messages=[
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": question,
}
],
model="llama3-70b-8192", # A powerful model available via Groq
temperature=0.0, # Set to 0 for deterministic, factual answers
)
answer = chat_completion.choices[0].message.content.strip()
print(f"GroqAgent generated answer: {answer}")
return answer
except Exception as e:
print(f"An error occurred while calling Groq API: {e}")
return f"Error generating answer: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GroqAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent (Now using GroqAgent)
try:
# Securely get the API key from Hugging Face Space secrets
groq_api_key = os.getenv("GROQ_API_KEY")
if not groq_api_key:
raise ValueError("GROQ_API_KEY secret not found! Please set it in your Space's settings.")
agent = GroqAgent(api_key=groq_api_key)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# The link to your codebase (useful for verification, so please keep your space public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code link: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Groq-Powered Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Make sure you have set your `GROQ_API_KEY` in the 'Secrets' section of your Space settings.
2. Log in to your Hugging Face account using the button below. This is required for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit your answers, and see your score.
---
**Disclaimers:**
Once you click the "submit" button, the process can take some time as the agent answers all the questions.
This space provides a basic setup. You are encouraged to modify the `GroqAgent` class to experiment with different models, prompts, or even add tools to improve your score!
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
# CORRECTED LINE: The `inputs` argument is removed. Gradio passes the
# OAuthProfile automatically to the `run_and_submit_all` function
# because of the type hint in its definition.
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_id_startup = os.getenv("SPACE_ID")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
if not os.getenv("GROQ_API_KEY"):
print("⚠️ WARNING: GROQ_API_KEY secret is not set. The app will fail if run.")
else:
print("✅ GROQ_API_KEY secret is set.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Groq Agent Evaluation...")
demo.launch(debug=True, share=False) |