import streamlit as st from PIL import Image from model_utils import BugClassifier, get_severity_prediction # Page configuration st.set_page_config( page_title="Bug-O-Scope 🔍🐞", page_icon="🔍", layout="wide" ) # Initialize session state for model @st.cache_resource def load_model(): try: print("Loading model...") model = BugClassifier() print("Model loaded successfully") return model except Exception as e: print(f"Error loading model: {str(e)}") return None # Ensure model is loaded if 'model' not in st.session_state: st.session_state.model = load_model() def main(): # Header st.title("Bug-O-Scope 🔍🐞") st.markdown(""" Welcome to Bug-O-Scope! Upload a picture of an insect to learn more about it. This educational tool helps you identify bugs and understand their role in our ecosystem. """) # Sidebar st.sidebar.header("About Bug-O-Scope") st.sidebar.markdown(""" Bug-O-Scope is an AI-powered tool that helps you: * 🔍 Identify insects from photos * 📚 Learn about different species * 🌍 Understand their ecological impact * 🔬 Compare different insects """) # Check if model loaded successfully if st.session_state.model is None: st.error("Error: Model failed to load. Please try refreshing the page.") return # Main content tab1, tab2 = st.tabs(["Single Bug Analysis", "Bug Comparison"]) with tab1: single_bug_analysis() with tab2: compare_bugs() def single_bug_analysis(): """Handle single bug analysis""" uploaded_file = st.file_uploader("Upload a bug photo", type=['png', 'jpg', 'jpeg'], key="single") if uploaded_file: try: # Load and display image image = Image.open(uploaded_file) col1, col2 = st.columns(2) with col1: st.image(image, caption="Uploaded Image", use_container_width=True) with col2: with st.spinner("Analyzing your bug..."): # Get predictions prediction, confidence = st.session_state.model.predict(image) print(f"Prediction: {prediction}, Confidence: {confidence}") st.success("Analysis Complete!") st.markdown("### Identified Species") st.markdown(f"**{prediction}**") st.markdown(f"Confidence: {confidence:.2f}%") # Only show ecological impact for known insects if prediction != "Unknown Insect" and prediction != "Error Processing Image": severity = get_severity_prediction(prediction) st.markdown("### Ecological Impact") severity_color = { "Low": "green", "Medium": "orange", "High": "red", "Unknown": "gray" } st.markdown( f"Severity: {severity}", unsafe_allow_html=True ) # Display species information if prediction != "Unknown Insect" and prediction != "Error Processing Image": st.markdown("### About This Species") species_info = st.session_state.model.get_species_info(prediction) st.markdown(species_info) # Display visualization st.markdown("### Feature Highlights") gradcam = st.session_state.model.get_gradcam(image) st.image(gradcam, caption="Important Features", use_container_width=True) except Exception as e: st.error(f"Error processing image: {str(e)}") st.info("Please try uploading a different image.") def compare_bugs(): """Handle bug comparison""" col1, col2 = st.columns(2) with col1: file1 = st.file_uploader("Upload first bug photo", type=['png', 'jpg', 'jpeg'], key="compare1") if file1: try: image1 = Image.open(file1) st.image(image1, caption="First Bug", use_container_width=True) except Exception as e: st.error(f"Error loading first image: {str(e)}") return with col2: file2 = st.file_uploader("Upload second bug photo", type=['png', 'jpg', 'jpeg'], key="compare2") if file2: try: image2 = Image.open(file2) st.image(image2, caption="Second Bug", use_container_width=True) except Exception as e: st.error(f"Error loading second image: {str(e)}") return if file1 and file2: try: with st.spinner("Generating comparison..."): # Get predictions pred1, conf1 = st.session_state.model.predict(image1) pred2, conf2 = st.session_state.model.predict(image2) if pred1 not in ["Unknown Insect", "Error Processing Image"] and \ pred2 not in ["Unknown Insect", "Error Processing Image"]: # Display results st.markdown("### Comparison Results") comp_col1, comp_col2 = st.columns(2) with comp_col1: st.markdown(f"**Species 1**: {pred1}") st.markdown(f"Confidence: {conf1:.2f}%") gradcam1 = st.session_state.model.get_gradcam(image1) st.image(gradcam1, caption="Feature Highlights - Bug 1", use_container_width=True) with comp_col2: st.markdown(f"**Species 2**: {pred2}") st.markdown(f"Confidence: {conf2:.2f}%") gradcam2 = st.session_state.model.get_gradcam(image2) st.image(gradcam2, caption="Feature Highlights - Bug 2", use_container_width=True) # Display comparison st.markdown("### Key Differences") st.markdown(st.session_state.model.get_species_info(pred1)) st.markdown(st.session_state.model.get_species_info(pred2)) else: st.warning("Unable to generate meaningful comparison due to low confidence predictions.") except Exception as e: st.error(f"Error comparing images: {str(e)}") st.info("Please try uploading different images or try again.") if __name__ == "__main__": main()