Spaces:
Sleeping
Sleeping
Update model_utils.py
Browse files- model_utils.py +124 -66
model_utils.py
CHANGED
@@ -8,50 +8,73 @@ from scipy.special import softmax
|
|
8 |
|
9 |
class BugClassifier:
|
10 |
def __init__(self):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def predict(self, image):
|
44 |
-
"""
|
45 |
-
Make a prediction on the input image
|
46 |
-
Returns predicted class and confidence score
|
47 |
-
"""
|
48 |
try:
|
49 |
-
|
50 |
-
if isinstance(image, Image.Image):
|
51 |
-
image_tensor = self.preprocess_image(image)
|
52 |
-
else:
|
53 |
raise ValueError("Input must be a PIL Image")
|
54 |
|
|
|
|
|
|
|
55 |
# Make prediction
|
56 |
with torch.no_grad():
|
57 |
outputs = self.model(image_tensor)
|
@@ -60,43 +83,25 @@ class BugClassifier:
|
|
60 |
|
61 |
# Ensure index is within bounds
|
62 |
if pred_idx >= len(self.labels):
|
63 |
-
pred_idx = 0
|
64 |
|
65 |
return self.labels[pred_idx], float(probs[pred_idx] * 100)
|
66 |
-
except Exception as e:
|
67 |
-
print(f"Prediction error: {str(e)}")
|
68 |
-
return self.labels[0], 0.0 # Return default prediction in case of error
|
69 |
-
|
70 |
-
def preprocess_image(self, image):
|
71 |
-
"""
|
72 |
-
Preprocess image for model input
|
73 |
-
"""
|
74 |
-
try:
|
75 |
-
# Convert RGBA to RGB if necessary
|
76 |
-
if image.mode == 'RGBA':
|
77 |
-
image = image.convert('RGB')
|
78 |
|
79 |
-
# Process image using feature extractor
|
80 |
-
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
81 |
-
return inputs.pixel_values
|
82 |
except Exception as e:
|
83 |
-
print(f"
|
84 |
-
|
85 |
|
86 |
def get_species_info(self, species):
|
87 |
-
"""
|
88 |
-
|
89 |
-
"""
|
90 |
-
return self.species_info.get(species, f"""
|
91 |
Information about {species}:
|
92 |
This species is part of our insect database. While detailed information
|
93 |
is still being compiled, all insects play important roles in their ecosystems.
|
94 |
-
"""
|
|
|
95 |
|
96 |
def compare_species(self, species1, species2):
|
97 |
-
"""
|
98 |
-
Generate comparison information between two species
|
99 |
-
"""
|
100 |
info1 = self.get_species_info(species1)
|
101 |
info2 = self.get_species_info(species2)
|
102 |
|
@@ -110,4 +115,57 @@ class BugClassifier:
|
|
110 |
{info2}
|
111 |
|
112 |
Both species contribute to their ecosystems in unique ways.
|
113 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
class BugClassifier:
|
10 |
def __init__(self):
|
11 |
+
try:
|
12 |
+
# Initialize model and feature extractor
|
13 |
+
self.model = ViTForImageClassification.from_pretrained(
|
14 |
+
"google/vit-base-patch16-224",
|
15 |
+
num_labels=10,
|
16 |
+
ignore_mismatched_sizes=True
|
17 |
+
)
|
18 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
19 |
+
|
20 |
+
# Set model to evaluation mode
|
21 |
+
self.model.eval()
|
22 |
+
|
23 |
+
# Define class labels
|
24 |
+
self.labels = [
|
25 |
+
"Ladybug", "Butterfly", "Ant", "Beetle", "Spider",
|
26 |
+
"Grasshopper", "Moth", "Dragonfly", "Bee", "Wasp"
|
27 |
+
]
|
28 |
+
|
29 |
+
# Species information database
|
30 |
+
self.species_info = {
|
31 |
+
"Ladybug": """
|
32 |
+
Ladybugs are small, round beetles known for their distinctive spotted patterns.
|
33 |
+
They are beneficial insects that feed on plant-damaging pests like aphids.
|
34 |
+
Fun fact: The number of spots on a ladybug can indicate its species!
|
35 |
+
""",
|
36 |
+
"Butterfly": """
|
37 |
+
Butterflies are beautiful insects known for their large, colorful wings.
|
38 |
+
They play a crucial role in pollination and are indicators of ecosystem health.
|
39 |
+
They undergo complete metamorphosis from caterpillar to adult.
|
40 |
+
""",
|
41 |
+
"Ant": """
|
42 |
+
Ants are social insects that live in colonies. They are incredibly strong
|
43 |
+
for their size and play vital roles in soil health and ecosystem maintenance.
|
44 |
+
""",
|
45 |
+
# Add more species information for other classes...
|
46 |
+
}
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
raise RuntimeError(f"Error initializing BugClassifier: {str(e)}")
|
50 |
+
|
51 |
+
def preprocess_image(self, image):
|
52 |
+
"""Preprocess image for model input"""
|
53 |
+
try:
|
54 |
+
# Convert RGBA to RGB if necessary
|
55 |
+
if image.mode == 'RGBA':
|
56 |
+
image = image.convert('RGB')
|
57 |
+
|
58 |
+
# Resize image if needed
|
59 |
+
if image.size != (224, 224):
|
60 |
+
image = image.resize((224, 224), Image.Resampling.LANCZOS)
|
61 |
+
|
62 |
+
# Process image using feature extractor
|
63 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
64 |
+
return inputs.pixel_values
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
raise ValueError(f"Error preprocessing image: {str(e)}")
|
68 |
|
69 |
def predict(self, image):
|
70 |
+
"""Make a prediction on the input image"""
|
|
|
|
|
|
|
71 |
try:
|
72 |
+
if not isinstance(image, Image.Image):
|
|
|
|
|
|
|
73 |
raise ValueError("Input must be a PIL Image")
|
74 |
|
75 |
+
# Preprocess image
|
76 |
+
image_tensor = self.preprocess_image(image)
|
77 |
+
|
78 |
# Make prediction
|
79 |
with torch.no_grad():
|
80 |
outputs = self.model(image_tensor)
|
|
|
83 |
|
84 |
# Ensure index is within bounds
|
85 |
if pred_idx >= len(self.labels):
|
86 |
+
pred_idx = 0
|
87 |
|
88 |
return self.labels[pred_idx], float(probs[pred_idx] * 100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
90 |
except Exception as e:
|
91 |
+
print(f"Prediction error: {str(e)}")
|
92 |
+
return self.labels[0], 0.0
|
93 |
|
94 |
def get_species_info(self, species):
|
95 |
+
"""Return information about a species"""
|
96 |
+
default_info = f"""
|
|
|
|
|
97 |
Information about {species}:
|
98 |
This species is part of our insect database. While detailed information
|
99 |
is still being compiled, all insects play important roles in their ecosystems.
|
100 |
+
"""
|
101 |
+
return self.species_info.get(species, default_info)
|
102 |
|
103 |
def compare_species(self, species1, species2):
|
104 |
+
"""Generate comparison information between two species"""
|
|
|
|
|
105 |
info1 = self.get_species_info(species1)
|
106 |
info2 = self.get_species_info(species2)
|
107 |
|
|
|
115 |
{info2}
|
116 |
|
117 |
Both species contribute to their ecosystems in unique ways.
|
118 |
+
"""
|
119 |
+
|
120 |
+
def get_gradcam(self, image):
|
121 |
+
"""Generate Grad-CAM visualization for the image"""
|
122 |
+
try:
|
123 |
+
# Preprocess image
|
124 |
+
image_tensor = self.preprocess_image(image)
|
125 |
+
|
126 |
+
# Get model attention weights (using last layer's attention)
|
127 |
+
with torch.no_grad():
|
128 |
+
outputs = self.model(image_tensor, output_attentions=True)
|
129 |
+
attention = outputs.attentions[-1] # Get last layer's attention
|
130 |
+
|
131 |
+
# Convert attention to heatmap
|
132 |
+
attention_map = attention.mean(dim=1).mean(dim=1).numpy()[0]
|
133 |
+
|
134 |
+
# Resize attention map to image size
|
135 |
+
attention_map = cv2.resize(attention_map, (224, 224))
|
136 |
+
|
137 |
+
# Normalize attention map
|
138 |
+
attention_map = (attention_map - attention_map.min()) / (attention_map.max() - attention_map.min())
|
139 |
+
|
140 |
+
# Convert to heatmap
|
141 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * attention_map), cv2.COLORMAP_JET)
|
142 |
+
|
143 |
+
# Convert original image to RGB numpy array
|
144 |
+
original_image = np.array(image.resize((224, 224)))
|
145 |
+
if len(original_image.shape) == 2: # Convert grayscale to RGB
|
146 |
+
original_image = cv2.cvtColor(original_image, cv2.COLOR_GRAY2RGB)
|
147 |
+
|
148 |
+
# Overlay heatmap on original image
|
149 |
+
overlay = cv2.addWeighted(original_image, 0.7, heatmap, 0.3, 0)
|
150 |
+
|
151 |
+
return Image.fromarray(overlay)
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
print(f"Error generating Grad-CAM: {str(e)}")
|
155 |
+
return image # Return original image if Grad-CAM fails
|
156 |
+
|
157 |
+
def get_severity_prediction(species):
|
158 |
+
"""Predict ecological severity/impact based on species"""
|
159 |
+
severity_map = {
|
160 |
+
"Ladybug": "Low",
|
161 |
+
"Butterfly": "Low",
|
162 |
+
"Ant": "Medium",
|
163 |
+
"Beetle": "Medium",
|
164 |
+
"Spider": "Low",
|
165 |
+
"Grasshopper": "Medium",
|
166 |
+
"Moth": "Low",
|
167 |
+
"Dragonfly": "Low",
|
168 |
+
"Bee": "Low",
|
169 |
+
"Wasp": "Medium"
|
170 |
+
}
|
171 |
+
return severity_map.get(species, "Medium")
|