Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,161 +1,65 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
-
import
|
4 |
-
from model_utils import BugClassifier
|
5 |
-
from transformers import AutoFeatureExtractor
|
6 |
|
7 |
-
# Page configuration
|
8 |
st.set_page_config(
|
9 |
page_title="Bug-O-Scope ππ",
|
10 |
page_icon="π",
|
11 |
-
layout="wide"
|
12 |
-
initial_sidebar_state="expanded"
|
13 |
)
|
14 |
|
15 |
-
# Initialize session state
|
16 |
@st.cache_resource
|
17 |
def load_model():
|
18 |
-
|
19 |
-
return BugClassifier(), AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
20 |
-
except Exception as e:
|
21 |
-
st.error(f"Error loading model: {str(e)}")
|
22 |
-
return None, None
|
23 |
-
|
24 |
-
if 'model' not in st.session_state:
|
25 |
-
st.session_state.model, st.session_state.feature_extractor = load_model()
|
26 |
|
27 |
def main():
|
28 |
-
# Header
|
29 |
st.title("Bug-O-Scope ππ")
|
30 |
-
st.markdown(
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
-
# Sidebar
|
36 |
st.sidebar.header("About Bug-O-Scope")
|
37 |
-
st.sidebar.markdown(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
44 |
|
45 |
-
# Main content
|
46 |
tab1, tab2 = st.tabs(["Single Bug Analysis", "Bug Comparison"])
|
47 |
|
48 |
with tab1:
|
49 |
-
single_bug_analysis()
|
50 |
|
51 |
with tab2:
|
52 |
-
|
53 |
|
54 |
-
def single_bug_analysis():
|
55 |
-
"
|
56 |
-
uploaded_file = st.file_uploader("Upload a bug photo", type=['png', 'jpg', 'jpeg'], key="single")
|
57 |
-
|
58 |
-
if uploaded_file:
|
59 |
-
try:
|
60 |
-
image = Image.open(uploaded_file)
|
61 |
-
col1, col2 = st.columns(2)
|
62 |
-
|
63 |
-
with col1:
|
64 |
-
st.image(image, caption="Uploaded Image", use_container_width=True)
|
65 |
-
|
66 |
-
with col2:
|
67 |
-
with st.spinner("Analyzing your bug..."):
|
68 |
-
# Get predictions
|
69 |
-
prediction, confidence = st.session_state.model.predict(image)
|
70 |
-
severity = get_severity_prediction(prediction)
|
71 |
-
|
72 |
-
st.success("Analysis Complete!")
|
73 |
-
st.markdown(f"### Identified Species")
|
74 |
-
st.markdown(f"**{prediction}**")
|
75 |
-
st.markdown(f"Confidence: {confidence:.2f}%")
|
76 |
-
|
77 |
-
st.markdown("### Ecological Impact")
|
78 |
-
severity_color = {
|
79 |
-
"Low": "green",
|
80 |
-
"Medium": "orange",
|
81 |
-
"High": "red"
|
82 |
-
}
|
83 |
-
st.markdown(
|
84 |
-
f"Severity: <span style='color: {severity_color[severity]}'>{severity}</span>",
|
85 |
-
unsafe_allow_html=True
|
86 |
-
)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
st.markdown(species_info)
|
92 |
-
|
93 |
-
# Display Grad-CAM visualization
|
94 |
-
st.markdown("### Feature Highlights")
|
95 |
-
gradcam = st.session_state.model.get_gradcam(image)
|
96 |
-
st.image(gradcam, caption="Important Features", use_container_width=True)
|
97 |
-
|
98 |
-
except Exception as e:
|
99 |
-
st.error(f"Error processing image: {str(e)}")
|
100 |
-
st.info("Please try uploading a different image.")
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
file1 = st.file_uploader("Upload first bug photo", type=['png', 'jpg', 'jpeg'], key="compare1")
|
108 |
-
if file1:
|
109 |
-
try:
|
110 |
-
image1 = Image.open(file1)
|
111 |
-
st.image(image1, caption="First Bug", use_container_width=True)
|
112 |
-
except Exception as e:
|
113 |
-
st.error(f"Error loading first image: {str(e)}")
|
114 |
-
return
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
image2 = Image.open(file2)
|
121 |
-
st.image(image2, caption="Second Bug", use_container_width=True)
|
122 |
-
except Exception as e:
|
123 |
-
st.error(f"Error loading second image: {str(e)}")
|
124 |
-
return
|
125 |
-
|
126 |
-
if file1 and file2:
|
127 |
-
try:
|
128 |
-
with st.spinner("Generating comparison..."):
|
129 |
-
# Get predictions for both images
|
130 |
-
pred1, conf1 = st.session_state.model.predict(image1)
|
131 |
-
pred2, conf2 = st.session_state.model.predict(image2)
|
132 |
-
|
133 |
-
# Generate Grad-CAM visualizations
|
134 |
-
gradcam1 = st.session_state.model.get_gradcam(image1)
|
135 |
-
gradcam2 = st.session_state.model.get_gradcam(image2)
|
136 |
-
|
137 |
-
# Display results
|
138 |
-
st.markdown("### Comparison Results")
|
139 |
-
comp_col1, comp_col2 = st.columns(2)
|
140 |
-
|
141 |
-
with comp_col1:
|
142 |
-
st.markdown(f"**Species 1**: {pred1}")
|
143 |
-
st.markdown(f"Confidence: {conf1:.2f}%")
|
144 |
-
st.image(gradcam1, caption="Feature Highlights - Bug 1", use_container_width=True)
|
145 |
-
|
146 |
-
with comp_col2:
|
147 |
-
st.markdown(f"**Species 2**: {pred2}")
|
148 |
-
st.markdown(f"Confidence: {conf2:.2f}%")
|
149 |
-
st.image(gradcam2, caption="Feature Highlights - Bug 2", use_container_width=True)
|
150 |
-
|
151 |
-
# Display comparison information
|
152 |
-
st.markdown("### Key Differences")
|
153 |
-
differences = st.session_state.model.compare_species(pred1, pred2)
|
154 |
-
st.markdown(differences)
|
155 |
-
|
156 |
-
except Exception as e:
|
157 |
-
st.error(f"Error comparing images: {str(e)}")
|
158 |
-
st.info("Please try uploading different images or try again.")
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
main()
|
|
|
1 |
+
# 1. app.py
|
2 |
+
# Main Streamlit app for UI and user interaction
|
3 |
import streamlit as st
|
4 |
from PIL import Image
|
5 |
+
from dataset_utils import load_insect_dataset, preprocess_image
|
6 |
+
from model_utils import BugClassifier
|
|
|
7 |
|
|
|
8 |
st.set_page_config(
|
9 |
page_title="Bug-O-Scope ππ",
|
10 |
page_icon="π",
|
11 |
+
layout="wide"
|
|
|
12 |
)
|
13 |
|
|
|
14 |
@st.cache_resource
|
15 |
def load_model():
|
16 |
+
return BugClassifier()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def main():
|
|
|
19 |
st.title("Bug-O-Scope ππ")
|
20 |
+
st.markdown(
|
21 |
+
"""
|
22 |
+
Welcome to Bug-O-Scope! Upload a photo of an insect to identify it and learn about its ecological importance.
|
23 |
+
"""
|
24 |
+
)
|
25 |
|
|
|
26 |
st.sidebar.header("About Bug-O-Scope")
|
27 |
+
st.sidebar.markdown(
|
28 |
+
"""
|
29 |
+
Bug-O-Scope is powered by AI to help you:
|
30 |
+
- Identify insects
|
31 |
+
- Learn about species
|
32 |
+
- Understand their ecological roles
|
33 |
+
"""
|
34 |
+
)
|
35 |
+
|
36 |
+
model = load_model()
|
37 |
|
|
|
38 |
tab1, tab2 = st.tabs(["Single Bug Analysis", "Bug Comparison"])
|
39 |
|
40 |
with tab1:
|
41 |
+
single_bug_analysis(model)
|
42 |
|
43 |
with tab2:
|
44 |
+
st.markdown("Bug comparison feature coming soon!")
|
45 |
|
46 |
+
def single_bug_analysis(model):
|
47 |
+
uploaded_file = st.file_uploader("Upload a bug photo", type=['png', 'jpg', 'jpeg'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
if uploaded_file:
|
50 |
+
image = Image.open(uploaded_file)
|
51 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
with st.spinner("Analyzing your bug..."):
|
54 |
+
prediction, confidence = model.predict(image)
|
55 |
+
st.success("Analysis Complete!")
|
56 |
+
st.markdown(f"**Identified Species**: {prediction}")
|
57 |
+
st.markdown(f"**Confidence**: {confidence:.2f}%")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
if prediction != "Unknown Insect":
|
60 |
+
species_info = model.get_species_info(prediction)
|
61 |
+
st.markdown("### About This Species")
|
62 |
+
st.markdown(species_info)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
main()
|