import os import fitz import spacy import matplotlib.pyplot as plt from langchain.docstore.document import Document from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings # Load SpaCy model once nlp = spacy.load("en_core_web_sm") def spacy_sentence_tokenize(text: str) -> list: doc = nlp(text) return [sent.text.strip() for sent in doc.sents] def load_pdf_to_documents(pdf_path: str) -> list: documents = [] with fitz.open(pdf_path) as doc: for i, page in enumerate(doc): text = page.get_text().replace("-\n", "").replace("\n", " ").strip() if text: documents.append(Document(page_content=text, metadata={"page": i})) return documents def sentence_overlap_chunk(text: str, max_tokens: int = 150, overlap_sent_count: int = 2) -> list: sentences = spacy_sentence_tokenize(text) chunks, current_chunk, current_len = [], [], 0 for sentence in sentences: token_count = len(sentence.split()) if current_len + token_count <= max_tokens: current_chunk.append(sentence) current_len += token_count else: chunks.append(" ".join(current_chunk)) current_chunk = current_chunk[-overlap_sent_count:] + [sentence] current_len = sum(len(s.split()) for s in current_chunk) if current_chunk: chunks.append(" ".join(current_chunk)) return chunks def analyze_chunks(chunks: list): token_lengths = [len(chunk.page_content.split()) for chunk in chunks] print(f"Total Chunks: {len(token_lengths)}") print(f"Avg Tokens per Chunk: {sum(token_lengths)/len(token_lengths):.2f}") print(f"Min Tokens: {min(token_lengths)}") print(f"Max Tokens: {max(token_lengths)}") plt.hist(token_lengths, bins=20) plt.title("Chunk Token Length Distribution") plt.xlabel("Token Count") plt.ylabel("Number of Chunks") plt.show() def build_vector_store(documents: list, max_tokens: int = 250, overlap_sent_count: int = 3, model_name: str = "sentence-transformers/allenai-specter", persist_directory: str = "./vector_db") -> FAISS: all_chunks = [] for doc in documents: chunks = sentence_overlap_chunk(doc.page_content, max_tokens=max_tokens, overlap_sent_count=overlap_sent_count) all_chunks.extend([Document(page_content=chunk, metadata=doc.metadata) for chunk in chunks]) analyze_chunks(all_chunks) embeddings = HuggingFaceEmbeddings(model_name=model_name) vectorstore = FAISS.from_documents(all_chunks, embeddings) vectorstore.save_local(persist_directory) return vectorstore def load_vector_store(persist_directory: str, model_name: str = "sentence-transformers/allenai-specter") -> FAISS: embeddings = HuggingFaceEmbeddings(model_name=model_name) return FAISS.load_local(persist_directory, embeddings, allow_dangerous_deserialization=True) def query_vector_store(vectorstore: FAISS, query: str, k: int = 3, show: bool = True): results = vectorstore.similarity_search(query, k=k) if show: for i, doc in enumerate(results, 1): print(f"\n--- Result {i} (Page {doc.metadata.get('page')}):\n{doc.page_content[:500]}...\n") return results