dalide commited on
Commit
2316314
·
verified ·
1 Parent(s): b463426

Upload 6 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ her2_faiss_db/index.faiss filter=lfs diff=lfs merge=lfs -text
her2_faiss_db/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:128bb737bb3397c970cde24772a305d88f1402a1d1387d9357647c3cf39ae783
3
+ size 113709
her2_faiss_db/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5e97c97a1f1b82dae54340cda46900b5f92d2eb5d7269771f59546f2afba484
3
+ size 53682
utils/__init__.py ADDED
File without changes
utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (187 Bytes). View file
 
utils/__pycache__/pdf_vector_utils.cpython-310.pyc ADDED
Binary file (3.95 kB). View file
 
utils/pdf_vector_utils.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import fitz
3
+ import spacy
4
+ import matplotlib.pyplot as plt
5
+ from langchain.docstore.document import Document
6
+ from langchain_community.vectorstores import FAISS
7
+ from langchain_huggingface import HuggingFaceEmbeddings
8
+
9
+ # Load SpaCy model once
10
+ nlp = spacy.load("en_core_web_sm")
11
+
12
+ def spacy_sentence_tokenize(text: str) -> list:
13
+ doc = nlp(text)
14
+ return [sent.text.strip() for sent in doc.sents]
15
+
16
+ def load_pdf_to_documents(pdf_path: str) -> list:
17
+ documents = []
18
+ with fitz.open(pdf_path) as doc:
19
+ for i, page in enumerate(doc):
20
+ text = page.get_text().replace("-\n", "").replace("\n", " ").strip()
21
+ if text:
22
+ documents.append(Document(page_content=text, metadata={"page": i}))
23
+ return documents
24
+
25
+ def sentence_overlap_chunk(text: str, max_tokens: int = 150, overlap_sent_count: int = 2) -> list:
26
+ sentences = spacy_sentence_tokenize(text)
27
+ chunks, current_chunk, current_len = [], [], 0
28
+
29
+ for sentence in sentences:
30
+ token_count = len(sentence.split())
31
+ if current_len + token_count <= max_tokens:
32
+ current_chunk.append(sentence)
33
+ current_len += token_count
34
+ else:
35
+ chunks.append(" ".join(current_chunk))
36
+ current_chunk = current_chunk[-overlap_sent_count:] + [sentence]
37
+ current_len = sum(len(s.split()) for s in current_chunk)
38
+
39
+ if current_chunk:
40
+ chunks.append(" ".join(current_chunk))
41
+ return chunks
42
+
43
+ def analyze_chunks(chunks: list):
44
+ token_lengths = [len(chunk.page_content.split()) for chunk in chunks]
45
+
46
+ print(f"Total Chunks: {len(token_lengths)}")
47
+ print(f"Avg Tokens per Chunk: {sum(token_lengths)/len(token_lengths):.2f}")
48
+ print(f"Min Tokens: {min(token_lengths)}")
49
+ print(f"Max Tokens: {max(token_lengths)}")
50
+
51
+ plt.hist(token_lengths, bins=20)
52
+ plt.title("Chunk Token Length Distribution")
53
+ plt.xlabel("Token Count")
54
+ plt.ylabel("Number of Chunks")
55
+ plt.show()
56
+
57
+ def build_vector_store(documents: list,
58
+ max_tokens: int = 250,
59
+ overlap_sent_count: int = 3,
60
+ model_name: str = "sentence-transformers/allenai-specter",
61
+ persist_directory: str = "./vector_db") -> FAISS:
62
+
63
+ all_chunks = []
64
+ for doc in documents:
65
+ chunks = sentence_overlap_chunk(doc.page_content, max_tokens=max_tokens, overlap_sent_count=overlap_sent_count)
66
+ all_chunks.extend([Document(page_content=chunk, metadata=doc.metadata) for chunk in chunks])
67
+
68
+ analyze_chunks(all_chunks)
69
+
70
+ embeddings = HuggingFaceEmbeddings(model_name=model_name)
71
+ vectorstore = FAISS.from_documents(all_chunks, embeddings)
72
+ vectorstore.save_local(persist_directory)
73
+ return vectorstore
74
+
75
+ def load_vector_store(persist_directory: str,
76
+ model_name: str = "sentence-transformers/allenai-specter") -> FAISS:
77
+ embeddings = HuggingFaceEmbeddings(model_name=model_name)
78
+ return FAISS.load_local(persist_directory, embeddings, allow_dangerous_deserialization=True)
79
+
80
+ def query_vector_store(vectorstore: FAISS, query: str, k: int = 3, show: bool = True):
81
+ results = vectorstore.similarity_search(query, k=k)
82
+ if show:
83
+ for i, doc in enumerate(results, 1):
84
+ print(f"\n--- Result {i} (Page {doc.metadata.get('page')}):\n{doc.page_content[:500]}...\n")
85
+ return results