|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import time |
|
import math |
|
import logging |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.multiprocessing import Lock, Manager |
|
|
|
from abc import ABC, abstractmethod |
|
from flash_vstream.model.multimodal_encoder.builder import build_vision_tower |
|
from flash_vstream.model.multimodal_projector.builder import build_vision_projector |
|
from flash_vstream.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
|
|
from flash_vstream.model.compress_functions import drop_feature, merge_feature, kmeans_feature, weighted_kmeans_feature, k_drop_feature, k_merge_feature, attention_feature |
|
|
|
|
|
class NeuralTuringMachine(nn.Module): |
|
def __init__(self, input_dim=1024, output_dim=1024, attention_dropout=0.1): |
|
super(NeuralTuringMachine, self).__init__() |
|
self.input_dim = input_dim |
|
self.output_dim = output_dim |
|
self.q_proj = nn.Linear(input_dim, output_dim) |
|
self.k_proj = nn.Linear(input_dim, output_dim) |
|
self.v_proj = nn.Linear(input_dim, output_dim) |
|
self.dropout = nn.Dropout(attention_dropout) |
|
self.out_proj = nn.Linear(output_dim, input_dim) |
|
self.out_dropout = nn.Dropout(attention_dropout) |
|
self.out_ln = nn.LayerNorm(input_dim, eps=1e-12) |
|
|
|
def get_weight(self, x, y): |
|
query = self.q_proj(x) |
|
key = self.k_proj(y) |
|
scores = torch.matmul(query, key.transpose(0, 1)) / math.sqrt(self.output_dim) |
|
weight = F.softmax(scores, dim=-1) |
|
return weight |
|
|
|
def forward(self, x, y): |
|
query = self.q_proj(x) |
|
key = self.k_proj(y) |
|
scores = torch.matmul(query, key.transpose(0, 1)) / math.sqrt(self.output_dim) |
|
weight = F.softmax(scores, dim=-1) |
|
attn = self.dropout(weight) |
|
value = self.v_proj(y) |
|
output = torch.matmul(attn, value) |
|
output = self.out_proj(output) |
|
output = self.out_dropout(output) |
|
output = self.out_ln(output.unsqueeze(0)).squeeze(0) |
|
return output |
|
|
|
|
|
class VStreamMetaModel: |
|
|
|
def __init__(self, config): |
|
super(VStreamMetaModel, self).__init__(config) |
|
|
|
self.mm_input_dim = config.mm_hidden_size |
|
if getattr(config, 'mm_use_4_vision_tokens', False): |
|
self.mm_input_dim = self.mm_input_dim * 4 |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = build_vision_projector(config, self.mm_input_dim) |
|
|
|
compress_Turing_hidden_dim = getattr(self.config, "compress_Turing_hidden_dim", 32) |
|
self.attention_model = NeuralTuringMachine(self.mm_input_dim, compress_Turing_hidden_dim) |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
|
|
if self.get_vision_tower() is None: |
|
vision_tower = build_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
vision_tower.load_model() |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') |
|
self.config.mm_hidden_size = vision_tower.hidden_size |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
|
|
self.config.compress_type = getattr(model_args, "compress_type", None) |
|
self.config.compress_size = getattr(model_args, "compress_size", 1) |
|
self.config.compress_long_memory_size = getattr(model_args, "compress_long_memory_size", 1) |
|
self.config.compress_Turing_memory_size = getattr(model_args, "compress_Turing_memory_size", 1) |
|
self.config.compress_Turing_update_ratio = getattr(model_args, "compress_Turing_update_ratio", 0.2) |
|
self.config.video_max_frames = getattr(model_args, "video_max_frames", 50) |
|
self.config.video_long_memory_length = getattr(model_args, "video_long_memory_length", 10) |
|
self.config.video_Turing_memory_length = getattr(model_args, "video_Turing_memory_length", 10) |
|
self.config.video_short_memory_length = getattr(model_args, "video_short_memory_length", 10) |
|
self.config.video_current_memory_length = getattr(model_args, "video_current_memory_length", 1) |
|
self.config.video_sample_type = getattr(model_args, "video_sample_type", "center") |
|
|
|
if getattr(self, 'mm_projector', None) is None: |
|
self.mm_projector = build_vision_projector(self.config) |
|
else: |
|
|
|
for p in self.mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} |
|
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) |
|
|
|
class VStreamMetaForCausalLM(ABC): |
|
|
|
def __init__(self, config): |
|
super(VStreamMetaForCausalLM, self).__init__(config) |
|
|
|
self.use_video_streaming_mode = False |
|
self.video_embedding_memory = None |
|
self.video_embedding_mem_lock = Lock() |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_model().get_vision_tower()(images) |
|
return image_features |
|
|
|
def reshape_2x2_image_features(self, image_features): |
|
B, P, D = image_features.shape |
|
patch_size = round(math.sqrt(P)) |
|
assert patch_size % 2 == 0, "Patch size must be divisible by 2." |
|
image_features = image_features.reshape(B, patch_size, patch_size, D) |
|
image_features_2x2 = image_features.reshape(B, patch_size // 2, 2, patch_size // 2, 2, D) |
|
image_features_2x2 = image_features_2x2.permute(0, 1, 3, 2, 4, 5) |
|
image_features_2x2 = image_features_2x2.reshape(B, patch_size // 2, patch_size // 2, 4 * D) |
|
image_features = image_features_2x2.reshape(B, (patch_size // 2) ** 2, 4 * D) |
|
return image_features |
|
|
|
def attention(self, turing_memory, new_feature, update_ratio=0.2): |
|
T1, D1 = turing_memory.shape |
|
T2, D2 = new_feature.shape |
|
assert D1 == D2, f"dimmension not match, {D1} != {D2}" |
|
model = self.get_model().attention_model |
|
weight = model.get_weight(turing_memory, new_feature) |
|
weight = weight * update_ratio |
|
decay = weight.sum(dim=1, keepdim=True) |
|
turing_memory = turing_memory * (1 - decay) + torch.mm(weight, new_feature) |
|
return turing_memory |
|
|
|
def attention2(self, turing_memory, new_feature, update_ratio=0.2): |
|
T1, D1 = turing_memory.shape |
|
T2, D2 = new_feature.shape |
|
assert D1 == D2, f"dimmension not match, {D1} != {D2}" |
|
model = self.get_model().attention_model |
|
turing_memory = model.forward(turing_memory, new_feature) |
|
return turing_memory |
|
|
|
def compress_spatial_features(self, image_features, compress_size=1): |
|
compress_type = getattr(self.config, "compress_type", None) |
|
patch_size = round(math.sqrt(image_features.shape[1])) |
|
assert patch_size * patch_size == image_features.shape[1], f"For ViT feature map, {patch_size}*{patch_size}={patch_size**2} != {image_features.shape[1]}" |
|
if patch_size == compress_size: |
|
return image_features |
|
elif compress_type is not None: |
|
if 'mean' in self.config.compress_type: |
|
|
|
if compress_size == 1: |
|
image_features = image_features.mean(dim=1, keepdim=True) |
|
else: |
|
image_features = image_features.view(-1, patch_size, patch_size, image_features.shape[-1]) |
|
image_features = image_features.permute(0, 3, 1, 2) |
|
pooled_features = F.avg_pool2d(image_features, (patch_size // compress_size, patch_size // compress_size)) |
|
pooled_features = pooled_features.permute(0, 2, 3, 1) |
|
image_features = pooled_features.view(-1, compress_size * compress_size, pooled_features.shape[-1]) |
|
else: |
|
raise NotImplementedError(f"`compress_type` {self.config.compress_type} is not supported yet.") |
|
return image_features |
|
|
|
def compress_temporal_features(self, image_features): |
|
video_long_memory_length = getattr(self.config, "video_long_memory_length", 10) |
|
video_Turing_memory_length = getattr(self.config, "video_Turing_memory_length", 10) |
|
video_short_memory_length = getattr(self.config, "video_short_memory_length", 10) |
|
video_current_memory_length = getattr(self.config, "video_current_memory_length", 1) |
|
compress_long_memory_size = getattr(self.config, "compress_long_memory_size", 1) |
|
compress_Turing_memory_size = getattr(self.config, "compress_Turing_memory_size", 1) |
|
compress_Turing_update_ratio = getattr(self.config, "compress_Turing_update_ratio", 0.2) |
|
compress_fn_dic = { |
|
'drop': drop_feature, |
|
'merge': merge_feature, |
|
'kmeans': kmeans_feature, |
|
'weighted_kmeans': weighted_kmeans_feature, |
|
'kdrop': k_drop_feature, |
|
'kmerge': k_merge_feature, |
|
'attention': attention_feature, |
|
} |
|
compress_type = self.config.video_sample_type |
|
if compress_type in compress_fn_dic: |
|
compress_fn = compress_fn_dic[compress_type] |
|
else: |
|
raise NotImplementedError(f'max_length = {self.config.video_max_frames},' |
|
f'while video_sample_type = {compress_type} is not supported yet.') |
|
new_image_features = [] |
|
step_indices = [] |
|
step_features = [] |
|
for img_feature in image_features: |
|
cur_start = min(video_current_memory_length, img_feature.shape[0]) |
|
|
|
if cur_start == 0: |
|
cur_memory = img_feature[:0] |
|
long_memory = img_feature |
|
Turing_memory = img_feature |
|
else: |
|
cur_memory = img_feature[-cur_start:] |
|
long_memory = img_feature[:-cur_start] |
|
Turing_memory = img_feature[:-cur_start] |
|
if compress_long_memory_size * compress_long_memory_size != long_memory.shape[1]: |
|
long_memory = self.compress_spatial_features(long_memory, compress_long_memory_size) |
|
if compress_Turing_memory_size * compress_Turing_memory_size != Turing_memory.shape[1]: |
|
Turing_memory = self.compress_spatial_features(Turing_memory, compress_Turing_memory_size) |
|
|
|
if video_long_memory_length == 0 or long_memory.shape[0] == 0: |
|
long_memory_compreesed = long_memory[:0] |
|
else: |
|
long_memory_compreesed, weight, step_long_indices = compress_fn(long_memory, video_long_memory_length) |
|
|
|
sorted_indices = torch.argsort(weight, descending=True) |
|
key_centroids = long_memory[sorted_indices] |
|
key_length = 3 |
|
if key_centroids.shape[0] > key_length: |
|
key_centroids = key_centroids[:key_length] |
|
dists = ((long_memory.unsqueeze(1) - key_centroids.unsqueeze(0)) ** 2).sum(dim=3).sum(dim=2).sqrt() |
|
min_indices = torch.argmin(dists, dim=0) |
|
key_memory = img_feature[min_indices] |
|
cur_memory = torch.cat([key_memory, cur_memory], dim=0) |
|
|
|
if video_Turing_memory_length == 0 or Turing_memory.shape[0] == 0: |
|
Turing_memory_compreesed = Turing_memory[:0] |
|
else: |
|
Turing_memory_compreesed, _ = attention_feature(Turing_memory, video_Turing_memory_length, self.attention, update_ratio=compress_Turing_update_ratio) |
|
memory_feature = torch.cat([Turing_memory_compreesed.flatten(0, 1), long_memory_compreesed.flatten(0, 1), cur_memory.flatten(0, 1)], dim=0) |
|
new_image_features.append(memory_feature) |
|
return new_image_features |
|
|
|
def cat_proj(self, all_features): |
|
feature_split_size = [x.shape[0] for x in all_features] |
|
feature_embed = torch.cat(all_features, dim=0) |
|
feature_proj = self.get_model().mm_projector(feature_embed) |
|
feature_proj = torch.split(feature_proj, feature_split_size, dim=0) |
|
return feature_proj |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels, |
|
images, |
|
features |
|
): |
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or (images is None and features is None) or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and ((images is not None) or (features is not None)) and input_ids.shape[1] == 1: |
|
target_shape = past_key_values[-1][-1].shape[-2] + 1 |
|
if target_shape - attention_mask.shape[1] >= 0: |
|
attention_mask = torch.cat((attention_mask, torch.ones( |
|
(attention_mask.shape[0], target_shape - attention_mask.shape[1]), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device |
|
)), dim=1) |
|
elif target_shape - attention_mask.shape[1] < 0: |
|
attention_mask = attention_mask[:, :target_shape] |
|
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
if (features is not None) or (type(images) is list) or (images.ndim == 5): |
|
compress_size = getattr(self.config, "compress_size", 1) |
|
if images is not None: |
|
images = [image if len(image.shape) == 4 else image.unsqueeze(0) for image in images] |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
if getattr(self.config, 'mm_use_4_vision_tokens', False): |
|
image_features = self.reshape_2x2_image_features(image_features) |
|
image_features = self.compress_spatial_features(image_features, compress_size) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
else: |
|
image_features = [feat if len(feat.shape) == 3 else feat.unsqueeze(0) for feat in features] |
|
origin_img_features = image_features |
|
if getattr(self.config, 'mm_use_4_vision_tokens', False): |
|
image_features = [self.reshape_2x2_image_features(img_feature) for img_feature in image_features] |
|
image_features = [self.compress_spatial_features(image_feature, compress_size) for image_feature in image_features] |
|
|
|
image_features = self.compress_temporal_features(image_features) |
|
image_features = [x.to(self.device) for x in image_features] |
|
image_features = self.cat_proj(image_features) |
|
else: |
|
image_features = self.encode_images(images).to(self.device) |
|
if getattr(self.config, 'mm_use_4_vision_tokens', False): |
|
image_features = self.reshape_2x2_image_features(image_features) |
|
image_features = self.get_model().mm_projector(image_features) |
|
|
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
raise NotImplementedError |
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
assert cur_image_idx == batch_idx + 1 |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": |
|
new_input_embeds_padded.append(torch.cat(( |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
cur_new_embed |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat(( |
|
cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
def prepare_inputs_labels_for_multimodal_streaming( |
|
self, |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels |
|
): |
|
assert self.use_video_streaming_mode |
|
logger = logging.getLogger(__name__) |
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and input_ids.shape[1] == 1: |
|
target_shape = past_key_values[-1][-1].shape[-2] + 1 |
|
if target_shape - attention_mask.shape[1] >= 0: |
|
attention_mask = torch.cat((attention_mask, torch.ones( |
|
(attention_mask.shape[0], target_shape - attention_mask.shape[1]), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device |
|
)), dim=1) |
|
elif target_shape - attention_mask.shape[1] < 0: |
|
attention_mask = attention_mask[:, :target_shape] |
|
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
attempt_times = 0 |
|
while attempt_times < 300: |
|
try: |
|
with self.video_embedding_mem_lock: |
|
cur_memory, long_memory_compreesed, Turing_memory_compreesed, _ = self.video_embedding_memory |
|
logger.info(f'Read cur_memory={cur_memory.shape} {cur_memory.dtype}, long_memory_compreesed={long_memory_compreesed.shape} {long_memory_compreesed.dtype}, Turing_memory_compreesed={Turing_memory_compreesed.shape} {Turing_memory_compreesed.dtype}') |
|
image_feature = torch.cat([Turing_memory_compreesed.flatten(0, 1), long_memory_compreesed.flatten(0, 1), cur_memory.flatten(0, 1)], dim=0) |
|
image_features = [image_feature.to(self.device)] |
|
break |
|
|
|
except Exception as e: |
|
logger.error(f'Attempt:{attempt_times} Failed to get video features, Error: {e}') |
|
image_features = [] |
|
time.sleep(0.1) |
|
attempt_times += 1 |
|
|
|
image_features = [x.to(self.device) for x in image_features] |
|
image_features = self.cat_proj(image_features) |
|
|
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
raise NotImplementedError |
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
|
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
assert cur_image_idx == batch_idx + 1 |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": |
|
new_input_embeds_padded.append(torch.cat(( |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
cur_new_embed |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat(( |
|
cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
def embed_video_streaming( |
|
self, |
|
images |
|
): |
|
assert self.use_video_streaming_mode |
|
logger = logging.getLogger(__name__) |
|
|
|
compress_size = getattr(self.config, "compress_size", 1) |
|
video_long_memory_length = getattr(self.config, "video_long_memory_length", 10) |
|
video_Turing_memory_length = getattr(self.config, "video_Turing_memory_length", 10) |
|
video_short_memory_length = getattr(self.config, "video_short_memory_length", 10) |
|
video_current_memory_length = getattr(self.config, "video_current_memory_length", 1) |
|
compress_long_memory_size = getattr(self.config, "compress_long_memory_size", 1) |
|
compress_Turing_memory_size = getattr(self.config, "compress_Turing_memory_size", 1) |
|
compress_Turing_update_ratio = getattr(self.config, "compress_Turing_update_ratio", 0.2) |
|
compress_fn_dic = { |
|
'drop': drop_feature, |
|
'merge': merge_feature, |
|
'kmeans': kmeans_feature, |
|
'weighted_kmeans': weighted_kmeans_feature, |
|
'kdrop': k_drop_feature, |
|
'kmerge': k_merge_feature, |
|
'uni_kmerge': k_merge_feature, |
|
'both_kmerge': k_merge_feature, |
|
'split_kmerge': k_merge_feature, |
|
'attention': attention_feature, |
|
} |
|
|
|
if type(images) is list or images.ndim == 5: |
|
assert len(images) == 1 |
|
images = [image if len(image.shape) == 4 else image.unsqueeze(0) for image in images] |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
image_features = self.compress_spatial_features(image_features, compress_size) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
else: |
|
raise NotImplementedError('Should input video frames, not a single image') |
|
image_feature = image_features[0].detach().to(torch.float16).to(self.device) |
|
img_feature_buffer = image_feature.cpu() |
|
|
|
cur_start = min(video_current_memory_length, image_feature.shape[0]) |
|
if cur_start == 0: |
|
cur_memory = image_feature[:0] |
|
else: |
|
cur_memory = image_feature[-cur_start:] |
|
long_memory = image_feature |
|
Turing_memory = image_feature |
|
if compress_long_memory_size * compress_long_memory_size != long_memory.shape[1]: |
|
long_memory = self.compress_spatial_features(long_memory, compress_long_memory_size) |
|
if compress_Turing_memory_size * compress_Turing_memory_size != Turing_memory.shape[1]: |
|
Turing_memory = self.compress_spatial_features(Turing_memory, compress_Turing_memory_size) |
|
compress_type = self.config.video_sample_type |
|
if compress_type in compress_fn_dic: |
|
compress_fn = compress_fn_dic[compress_type] |
|
else: |
|
raise NotImplementedError(f'max_length = {self.config.video_max_frames},' |
|
f'while video_sample_type = {compress_type} is not supported yet.') |
|
long_memory_compreesed = long_memory |
|
Turing_memory_compreesed = Turing_memory |
|
|
|
if self.video_embedding_memory is not None and len(self.video_embedding_memory) > 0: |
|
old_cur_memory, old_long_memory_compreesed, old_Turing_memory_compreesed, old_img_feature_buffer = self.video_embedding_memory |
|
old_long_memory_compreesed = old_long_memory_compreesed.to(self.device) |
|
old_Turing_memory_compreesed = old_Turing_memory_compreesed.to(self.device) |
|
img_feature_buffer = torch.cat([old_img_feature_buffer, image_feature.cpu()], dim=0) |
|
assert isinstance(old_long_memory_compreesed, torch.Tensor) and old_long_memory_compreesed.shape[1:] == long_memory_compreesed.shape[1:] |
|
long_memory = torch.cat((old_long_memory_compreesed, long_memory_compreesed), dim=0) |
|
long_memory_compreesed, weight, step_long_indices = compress_fn(long_memory, video_long_memory_length) |
|
|
|
sorted_indices = torch.argsort(weight, descending=True) |
|
key_centroids = long_memory[sorted_indices] |
|
key_length = 3 |
|
if key_centroids.shape[0] > key_length: |
|
key_centroids = key_centroids[:key_length] |
|
dists = ((long_memory.unsqueeze(1) - key_centroids.unsqueeze(0)) ** 2).sum(dim=3).sum(dim=2).sqrt() |
|
min_indices = torch.argmin(dists, dim=0) |
|
key_memory = img_feature_buffer[min_indices.cpu()].to(self.device) |
|
cur_memory = torch.cat([key_memory, cur_memory], dim=0) |
|
Turing_memory = torch.cat((old_Turing_memory_compreesed, Turing_memory_compreesed), dim=0) |
|
Turing_memory_compreesed, _ = attention_feature(Turing_memory, video_Turing_memory_length, self.attention, update_ratio=compress_Turing_update_ratio) |
|
|
|
with self.video_embedding_mem_lock: |
|
self.video_embedding_memory[:] = [cur_memory.cpu(), long_memory_compreesed.cpu(), Turing_memory_compreesed.cpu(), img_feature_buffer] |
|
logger.info(f'Write cur_memory={cur_memory.shape} {cur_memory.dtype}, long_memory_compreesed={long_memory_compreesed.shape} {long_memory_compreesed.dtype}, Turing_memory_compreesed={Turing_memory_compreesed.shape} {Turing_memory_compreesed.dtype}') |
|
|
|
return [] |
|
|
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer): |
|
if model_args.mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model_args.mm_use_im_start_end: |
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') |
|
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] |
|
assert num_new_tokens == 2 |
|
if input_embeddings.shape == embed_tokens_weight.shape: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] |
|
elif embed_tokens_weight.shape[0] == num_new_tokens: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight |
|
else: |
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") |
|
elif model_args.mm_use_im_patch_token: |
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|