csalabs commited on
Commit
0807e41
·
1 Parent(s): 0c9ebbe

Update app.py

Browse files

Changing to multiple pdf

Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -70,8 +70,8 @@ def create_conversational_chain(vector_store):
70
  load_dotenv()
71
  llm = Replicate(
72
  streaming = True,
73
- model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
74
- # model = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e",
75
  callbacks=[StreamingStdOutCallbackHandler()],
76
  input = {"temperature": 0.01, "max_length" :500,"top_p":1})
77
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
@@ -95,13 +95,13 @@ def main():
95
  # Initialize session state
96
  initialize_session_state()
97
  st.title("Chat Docs CSA")
98
- loader = UnstructuredFileLoader('./Highway Traffic Act, R.S.O. 1990, c. H.8[465] - Copy.pdf')
99
- documents = loader.load()
100
- # documents = []
101
- # for file_path in file_paths:
102
- # loader = UnstructuredFileLoader(file_path)
103
- # loaded_doc = loader.load() # Assuming this returns a list of pages
104
- # documents.extend(loaded_doc)
105
 
106
  text_splitter=CharacterTextSplitter(separator='\n',
107
  chunk_size=1500,
 
70
  load_dotenv()
71
  llm = Replicate(
72
  streaming = True,
73
+ # model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
74
+ model = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e",
75
  callbacks=[StreamingStdOutCallbackHandler()],
76
  input = {"temperature": 0.01, "max_length" :500,"top_p":1})
77
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
 
95
  # Initialize session state
96
  initialize_session_state()
97
  st.title("Chat Docs CSA")
98
+ # loader = UnstructuredFileLoader('./Highway Traffic Act, R.S.O. 1990, c. H.8[465] - Copy.pdf')
99
+ # documents = loader.load()
100
+ documents = []
101
+ for file_path in file_paths:
102
+ loader = UnstructuredFileLoader(file_path)
103
+ loaded_doc = loader.load() # Assuming this returns a list of pages
104
+ documents.extend(loaded_doc)
105
 
106
  text_splitter=CharacterTextSplitter(separator='\n',
107
  chunk_size=1500,