crystina-z commited on
Commit
608503a
·
1 Parent(s): 6c34254

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -66,16 +66,23 @@ search_query = sorted(query2outputs)[0]
66
  def aggregate(list_of_hits):
67
  import numpy as np
68
  from permsc import KemenyOptimalAggregator, sum_kendall_tau, ranks_from_preferences
 
69
 
70
  preferences = []
71
  for result in list_of_hits:
72
  preferences.append([doc["rank"] for doc in result])
73
 
74
  preferences = np.array(preferences)
75
- y_optimal = KemenyOptimalAggregator().aggregate(preferences)
 
 
76
  rank2doc = {}
77
  for doc in list_of_hits[0]:
78
  rank2doc[doc["rank"]] = doc
 
 
 
 
79
  return [rank2doc[rank] for rank in y_optimal]
80
 
81
  aggregated_ranking = aggregate(query2outputs[search_query])
 
66
  def aggregate(list_of_hits):
67
  import numpy as np
68
  from permsc import KemenyOptimalAggregator, sum_kendall_tau, ranks_from_preferences
69
+ from permsc import BordaRankAggregator
70
 
71
  preferences = []
72
  for result in list_of_hits:
73
  preferences.append([doc["rank"] for doc in result])
74
 
75
  preferences = np.array(preferences)
76
+ # y_optimal = KemenyOptimalAggregator().aggregate(preferences)
77
+ y_optimal = BordaRankAggregator().aggregate(preferences)
78
+
79
  rank2doc = {}
80
  for doc in list_of_hits[0]:
81
  rank2doc[doc["rank"]] = doc
82
+
83
+ print("preferences: ", preferences.shape, preferences[0])
84
+ print("rank2doc:", rank2doc.keys())
85
+ print("y_optimal: ", y_optimal)
86
  return [rank2doc[rank] for rank in y_optimal]
87
 
88
  aggregated_ranking = aggregate(query2outputs[search_query])