PSC / app.py
crystina-z's picture
Update app.py
48bcd5d
raw
history blame
4.8 kB
import time
import json
import numpy as np
import streamlit as st
from pathlib import Path
from collections import defaultdict
import sys
path_root = Path("./")
sys.path.append(str(path_root))
st.set_page_config(page_title="PSC Runtime",
page_icon='🌸', layout="centered")
# cola, colb, colc = st.columns([5, 4, 5])
# colaa, colbb, colcc = st.columns([1, 8, 1])
# with colbb:
# runtime = st.select_slider(
# 'Select a runtime type',
# options=['PyTorch', 'ONNX Runtime'])
# st.write('Now using: ', runtime)
# colaa, colbb, colcc = st.columns([1, 8, 1])
# with colbb:
# encoder = st.select_slider(
# 'Select a query encoder',
# options=['uniCOIL', 'SPLADE++ Ensemble Distil', 'SPLADE++ Self Distil'])
# st.write('Now Running Encoder: ', encoder)
# if runtime == 'PyTorch':
# runtime = 'pytorch'
# runtime_index = 1
# else:
# runtime = 'onnx'
# runtime_index = 0
col1, col2 = st.columns([9, 1])
with col1:
search_query = st.text_input(label="search query", placeholder="Search")
with col2:
st.write('#')
button_clicked = st.button("πŸ”Ž")
import torch
fn = "dl19-gpt-3.5.pt"
object = torch.load(fn)
# for x for x in object:
# outputs = [x[2] for x in object]
outputs = object[2]
query2outputs = {}
for output in outputs:
all_queries = {x['query'] for x in output}
assert len(all_queries) == 1
query = list(all_queries)[0]
query2outputs[query] = [x['hits'] for x in output]
search_query = sorted(query2outputs)[0]
def preferences_from_hits(list_of_hits):
docid2id = {}
id2doc = {}
preferences = []
for result in list_of_hits:
for doc in result:
if doc["docid"] not in docid2id:
id = len(docid2id)
docid2id[doc["docid"]] = id
id2doc[id] = doc
print([doc["docid"] for doc in result])
print([docid2id[doc["docid"]] for doc in result])
preferences.append([docid2id[doc["docid"]] for doc in result])
# = {v: k for k, v in docid2id.items()}
return np.array(preferences), id2doc
def load_qrels(name):
import ir_datasets
if name == "dl19":
ds_name = "msmarco-passage/trec-dl-2019/judged"
elif name == "dl20":
ds_name = "msmarco-passage/trec-dl-2020/judged"
else:
raise ValueError(name)
dataset = ir_datasets.load(ds_name)
qrels = defaultdict(dict)
for qrel in dataset.qrels_iter():
qrels[qrel.query_id][qrel.doc_id] = qrel.relevance
return qrels
def aggregate(list_of_hits):
import numpy as np
from permsc import KemenyOptimalAggregator, sum_kendall_tau, ranks_from_preferences
from permsc import BordaRankAggregator
preferences, id2doc = preferences_from_hits(list_of_hits)
y_optimal = KemenyOptimalAggregator().aggregate(preferences)
# y_optimal = BordaRankAggregator().aggregate(preferences)
# print("-------------------------------------")
# print("preference:")
# print(preferences)
# print("preferences shape: ", preferences.shape)
# print("y_optimal: ", y_optimal)
return [id2doc[id] for id in y_optimal]
aggregated_ranking = aggregate(query2outputs[search_query])
qrels = load_qrels("dl19")
col1, col2 = st.columns([5, 5])
with col2:
if search_query or button_clicked:
num_results = None
t_0 = time.time()
# search_results = query2outputs[search_query][0] # first from the 20
search_results = aggregated_ranking
st.write(
f'<p align=\"right\" style=\"color:grey;\"> Before aggregation for query [{search_query}] ms</p>', unsafe_allow_html=True)
qid = {result["qid"] for result in search_results}
assert len(qid) == 1
qid = list(qid)[0]
for i, result in enumerate(search_results):
result_id = result["docid"]
contents = result["content"]
label = qrels[qid].get(result_id, 0)
if label == 3:
style = "style=\"color:blue;\""
elif label == 2:
style = "style=\"color:green;\""
elif label == 1:
style = "style=\"color:red;\""
else:
style = "style=\"color:grey;\""
# output = f'<div class="row"> <b>Rank</b>: {i+1} | <b>Document ID</b>: {result_id} | <b>Score</b>:{result_score:.2f}</div>'
output = f'<div class="row" {style}> <b>Rank</b>: {i+1} | <b>Document ID</b>: {result_id}'
try:
st.write(output, unsafe_allow_html=True)
st.write(
f'<div class="row" {style}>{contents}</div>', unsafe_allow_html=True)
except:
pass
st.write('---')