|
""" VoVNet (V1 & V2) |
|
|
|
Papers: |
|
* `An Energy and GPU-Computation Efficient Backbone Network` - https://arxiv.org/abs/1904.09730 |
|
* `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 |
|
|
|
Looked at https://github.com/youngwanLEE/vovnet-detectron2 & |
|
https://github.com/stigma0617/VoVNet.pytorch/blob/master/models_vovnet/vovnet.py |
|
for some reference, rewrote most of the code. |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
|
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import ConvNormAct, SeparableConvNormAct, BatchNormAct2d, ClassifierHead, DropPath, \ |
|
create_attn, create_norm_act_layer |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
__all__ = ['VovNet'] |
|
|
|
|
|
class SequentialAppendList(nn.Sequential): |
|
def __init__(self, *args): |
|
super(SequentialAppendList, self).__init__(*args) |
|
|
|
def forward(self, x: torch.Tensor, concat_list: List[torch.Tensor]) -> torch.Tensor: |
|
for i, module in enumerate(self): |
|
if i == 0: |
|
concat_list.append(module(x)) |
|
else: |
|
concat_list.append(module(concat_list[-1])) |
|
x = torch.cat(concat_list, dim=1) |
|
return x |
|
|
|
|
|
class OsaBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
mid_chs, |
|
out_chs, |
|
layer_per_block, |
|
residual=False, |
|
depthwise=False, |
|
attn='', |
|
norm_layer=BatchNormAct2d, |
|
act_layer=nn.ReLU, |
|
drop_path=None, |
|
): |
|
super(OsaBlock, self).__init__() |
|
|
|
self.residual = residual |
|
self.depthwise = depthwise |
|
conv_kwargs = dict(norm_layer=norm_layer, act_layer=act_layer) |
|
|
|
next_in_chs = in_chs |
|
if self.depthwise and next_in_chs != mid_chs: |
|
assert not residual |
|
self.conv_reduction = ConvNormAct(next_in_chs, mid_chs, 1, **conv_kwargs) |
|
else: |
|
self.conv_reduction = None |
|
|
|
mid_convs = [] |
|
for i in range(layer_per_block): |
|
if self.depthwise: |
|
conv = SeparableConvNormAct(mid_chs, mid_chs, **conv_kwargs) |
|
else: |
|
conv = ConvNormAct(next_in_chs, mid_chs, 3, **conv_kwargs) |
|
next_in_chs = mid_chs |
|
mid_convs.append(conv) |
|
self.conv_mid = SequentialAppendList(*mid_convs) |
|
|
|
|
|
next_in_chs = in_chs + layer_per_block * mid_chs |
|
self.conv_concat = ConvNormAct(next_in_chs, out_chs, **conv_kwargs) |
|
|
|
self.attn = create_attn(attn, out_chs) if attn else None |
|
|
|
self.drop_path = drop_path |
|
|
|
def forward(self, x): |
|
output = [x] |
|
if self.conv_reduction is not None: |
|
x = self.conv_reduction(x) |
|
x = self.conv_mid(x, output) |
|
x = self.conv_concat(x) |
|
if self.attn is not None: |
|
x = self.attn(x) |
|
if self.drop_path is not None: |
|
x = self.drop_path(x) |
|
if self.residual: |
|
x = x + output[0] |
|
return x |
|
|
|
|
|
class OsaStage(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
mid_chs, |
|
out_chs, |
|
block_per_stage, |
|
layer_per_block, |
|
downsample=True, |
|
residual=True, |
|
depthwise=False, |
|
attn='ese', |
|
norm_layer=BatchNormAct2d, |
|
act_layer=nn.ReLU, |
|
drop_path_rates=None, |
|
): |
|
super(OsaStage, self).__init__() |
|
self.grad_checkpointing = False |
|
|
|
if downsample: |
|
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) |
|
else: |
|
self.pool = None |
|
|
|
blocks = [] |
|
for i in range(block_per_stage): |
|
last_block = i == block_per_stage - 1 |
|
if drop_path_rates is not None and drop_path_rates[i] > 0.: |
|
drop_path = DropPath(drop_path_rates[i]) |
|
else: |
|
drop_path = None |
|
blocks += [OsaBlock( |
|
in_chs, mid_chs, out_chs, layer_per_block, residual=residual and i > 0, depthwise=depthwise, |
|
attn=attn if last_block else '', norm_layer=norm_layer, act_layer=act_layer, drop_path=drop_path) |
|
] |
|
in_chs = out_chs |
|
self.blocks = nn.Sequential(*blocks) |
|
|
|
def forward(self, x): |
|
if self.pool is not None: |
|
x = self.pool(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
class VovNet(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
cfg, |
|
in_chans=3, |
|
num_classes=1000, |
|
global_pool='avg', |
|
output_stride=32, |
|
norm_layer=BatchNormAct2d, |
|
act_layer=nn.ReLU, |
|
drop_rate=0., |
|
drop_path_rate=0., |
|
**kwargs, |
|
): |
|
""" |
|
Args: |
|
cfg (dict): Model architecture configuration |
|
in_chans (int): Number of input channels (default: 3) |
|
num_classes (int): Number of classifier classes (default: 1000) |
|
global_pool (str): Global pooling type (default: 'avg') |
|
output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32) |
|
norm_layer (Union[str, nn.Module]): normalization layer |
|
act_layer (Union[str, nn.Module]): activation layer |
|
drop_rate (float): Dropout rate (default: 0.) |
|
drop_path_rate (float): Stochastic depth drop-path rate (default: 0.) |
|
kwargs (dict): Extra kwargs overlayed onto cfg |
|
""" |
|
super(VovNet, self).__init__() |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
assert output_stride == 32 |
|
|
|
cfg = dict(cfg, **kwargs) |
|
stem_stride = cfg.get("stem_stride", 4) |
|
stem_chs = cfg["stem_chs"] |
|
stage_conv_chs = cfg["stage_conv_chs"] |
|
stage_out_chs = cfg["stage_out_chs"] |
|
block_per_stage = cfg["block_per_stage"] |
|
layer_per_block = cfg["layer_per_block"] |
|
conv_kwargs = dict(norm_layer=norm_layer, act_layer=act_layer) |
|
|
|
|
|
last_stem_stride = stem_stride // 2 |
|
conv_type = SeparableConvNormAct if cfg["depthwise"] else ConvNormAct |
|
self.stem = nn.Sequential(*[ |
|
ConvNormAct(in_chans, stem_chs[0], 3, stride=2, **conv_kwargs), |
|
conv_type(stem_chs[0], stem_chs[1], 3, stride=1, **conv_kwargs), |
|
conv_type(stem_chs[1], stem_chs[2], 3, stride=last_stem_stride, **conv_kwargs), |
|
]) |
|
self.feature_info = [dict( |
|
num_chs=stem_chs[1], reduction=2, module=f'stem.{1 if stem_stride == 4 else 2}')] |
|
current_stride = stem_stride |
|
|
|
|
|
stage_dpr = torch.split(torch.linspace(0, drop_path_rate, sum(block_per_stage)), block_per_stage) |
|
in_ch_list = stem_chs[-1:] + stage_out_chs[:-1] |
|
stage_args = dict(residual=cfg["residual"], depthwise=cfg["depthwise"], attn=cfg["attn"], **conv_kwargs) |
|
stages = [] |
|
for i in range(4): |
|
downsample = stem_stride == 2 or i > 0 |
|
stages += [OsaStage( |
|
in_ch_list[i], |
|
stage_conv_chs[i], |
|
stage_out_chs[i], |
|
block_per_stage[i], |
|
layer_per_block, |
|
downsample=downsample, |
|
drop_path_rates=stage_dpr[i], |
|
**stage_args, |
|
)] |
|
self.num_features = stage_out_chs[i] |
|
current_stride *= 2 if downsample else 1 |
|
self.feature_info += [dict(num_chs=self.num_features, reduction=current_stride, module=f'stages.{i}')] |
|
|
|
self.stages = nn.Sequential(*stages) |
|
|
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) |
|
|
|
for n, m in self.named_modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
elif isinstance(m, nn.Linear): |
|
nn.init.zeros_(m.bias) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^stem', |
|
blocks=r'^stages\.(\d+)' if coarse else r'^stages\.(\d+).blocks\.(\d+)', |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for s in self.stages: |
|
s.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
return self.stages(x) |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=pre_logits) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
|
|
|
|
model_cfgs = dict( |
|
vovnet39a=dict( |
|
stem_chs=[64, 64, 128], |
|
stage_conv_chs=[128, 160, 192, 224], |
|
stage_out_chs=[256, 512, 768, 1024], |
|
layer_per_block=5, |
|
block_per_stage=[1, 1, 2, 2], |
|
residual=False, |
|
depthwise=False, |
|
attn='', |
|
), |
|
vovnet57a=dict( |
|
stem_chs=[64, 64, 128], |
|
stage_conv_chs=[128, 160, 192, 224], |
|
stage_out_chs=[256, 512, 768, 1024], |
|
layer_per_block=5, |
|
block_per_stage=[1, 1, 4, 3], |
|
residual=False, |
|
depthwise=False, |
|
attn='', |
|
|
|
), |
|
ese_vovnet19b_slim_dw=dict( |
|
stem_chs=[64, 64, 64], |
|
stage_conv_chs=[64, 80, 96, 112], |
|
stage_out_chs=[112, 256, 384, 512], |
|
layer_per_block=3, |
|
block_per_stage=[1, 1, 1, 1], |
|
residual=True, |
|
depthwise=True, |
|
attn='ese', |
|
|
|
), |
|
ese_vovnet19b_dw=dict( |
|
stem_chs=[64, 64, 64], |
|
stage_conv_chs=[128, 160, 192, 224], |
|
stage_out_chs=[256, 512, 768, 1024], |
|
layer_per_block=3, |
|
block_per_stage=[1, 1, 1, 1], |
|
residual=True, |
|
depthwise=True, |
|
attn='ese', |
|
), |
|
ese_vovnet19b_slim=dict( |
|
stem_chs=[64, 64, 128], |
|
stage_conv_chs=[64, 80, 96, 112], |
|
stage_out_chs=[112, 256, 384, 512], |
|
layer_per_block=3, |
|
block_per_stage=[1, 1, 1, 1], |
|
residual=True, |
|
depthwise=False, |
|
attn='ese', |
|
), |
|
ese_vovnet19b=dict( |
|
stem_chs=[64, 64, 128], |
|
stage_conv_chs=[128, 160, 192, 224], |
|
stage_out_chs=[256, 512, 768, 1024], |
|
layer_per_block=3, |
|
block_per_stage=[1, 1, 1, 1], |
|
residual=True, |
|
depthwise=False, |
|
attn='ese', |
|
|
|
), |
|
ese_vovnet39b=dict( |
|
stem_chs=[64, 64, 128], |
|
stage_conv_chs=[128, 160, 192, 224], |
|
stage_out_chs=[256, 512, 768, 1024], |
|
layer_per_block=5, |
|
block_per_stage=[1, 1, 2, 2], |
|
residual=True, |
|
depthwise=False, |
|
attn='ese', |
|
), |
|
ese_vovnet57b=dict( |
|
stem_chs=[64, 64, 128], |
|
stage_conv_chs=[128, 160, 192, 224], |
|
stage_out_chs=[256, 512, 768, 1024], |
|
layer_per_block=5, |
|
block_per_stage=[1, 1, 4, 3], |
|
residual=True, |
|
depthwise=False, |
|
attn='ese', |
|
|
|
), |
|
ese_vovnet99b=dict( |
|
stem_chs=[64, 64, 128], |
|
stage_conv_chs=[128, 160, 192, 224], |
|
stage_out_chs=[256, 512, 768, 1024], |
|
layer_per_block=5, |
|
block_per_stage=[1, 3, 9, 3], |
|
residual=True, |
|
depthwise=False, |
|
attn='ese', |
|
), |
|
eca_vovnet39b=dict( |
|
stem_chs=[64, 64, 128], |
|
stage_conv_chs=[128, 160, 192, 224], |
|
stage_out_chs=[256, 512, 768, 1024], |
|
layer_per_block=5, |
|
block_per_stage=[1, 1, 2, 2], |
|
residual=True, |
|
depthwise=False, |
|
attn='eca', |
|
), |
|
) |
|
model_cfgs['ese_vovnet39b_evos'] = model_cfgs['ese_vovnet39b'] |
|
|
|
|
|
def _create_vovnet(variant, pretrained=False, **kwargs): |
|
return build_model_with_cfg( |
|
VovNet, |
|
variant, |
|
pretrained, |
|
model_cfg=model_cfgs[variant], |
|
feature_cfg=dict(flatten_sequential=True), |
|
**kwargs, |
|
) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.0.conv', 'classifier': 'head.fc', **kwargs, |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'vovnet39a.untrained': _cfg(url=''), |
|
'vovnet57a.untrained': _cfg(url=''), |
|
'ese_vovnet19b_slim_dw.untrained': _cfg(url=''), |
|
'ese_vovnet19b_dw.ra_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'ese_vovnet19b_slim.untrained': _cfg(url=''), |
|
'ese_vovnet39b.ra_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=0.95), |
|
'ese_vovnet57b.untrained': _cfg(url=''), |
|
'ese_vovnet99b.untrained': _cfg(url=''), |
|
'eca_vovnet39b.untrained': _cfg(url=''), |
|
'ese_vovnet39b_evos.untrained': _cfg(url=''), |
|
}) |
|
|
|
|
|
@register_model |
|
def vovnet39a(pretrained=False, **kwargs) -> VovNet: |
|
return _create_vovnet('vovnet39a', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def vovnet57a(pretrained=False, **kwargs) -> VovNet: |
|
return _create_vovnet('vovnet57a', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def ese_vovnet19b_slim_dw(pretrained=False, **kwargs) -> VovNet: |
|
return _create_vovnet('ese_vovnet19b_slim_dw', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def ese_vovnet19b_dw(pretrained=False, **kwargs) -> VovNet: |
|
return _create_vovnet('ese_vovnet19b_dw', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def ese_vovnet19b_slim(pretrained=False, **kwargs) -> VovNet: |
|
return _create_vovnet('ese_vovnet19b_slim', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def ese_vovnet39b(pretrained=False, **kwargs) -> VovNet: |
|
return _create_vovnet('ese_vovnet39b', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def ese_vovnet57b(pretrained=False, **kwargs) -> VovNet: |
|
return _create_vovnet('ese_vovnet57b', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def ese_vovnet99b(pretrained=False, **kwargs) -> VovNet: |
|
return _create_vovnet('ese_vovnet99b', pretrained=pretrained, **kwargs) |
|
|
|
|
|
@register_model |
|
def eca_vovnet39b(pretrained=False, **kwargs) -> VovNet: |
|
return _create_vovnet('eca_vovnet39b', pretrained=pretrained, **kwargs) |
|
|
|
|
|
|
|
|
|
@register_model |
|
def ese_vovnet39b_evos(pretrained=False, **kwargs) -> VovNet: |
|
def norm_act_fn(num_features, **nkwargs): |
|
return create_norm_act_layer('evonorms0', num_features, jit=False, **nkwargs) |
|
return _create_vovnet('ese_vovnet39b_evos', pretrained=pretrained, norm_layer=norm_act_fn, **kwargs) |
|
|