|
""" Twins |
|
A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers` |
|
- https://arxiv.org/pdf/2104.13840.pdf |
|
|
|
Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from functools import partial |
|
from typing import Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import Mlp, DropPath, to_2tuple, trunc_normal_, use_fused_attn |
|
from ._builder import build_model_with_cfg |
|
from ._features_fx import register_notrace_module |
|
from ._registry import register_model, generate_default_cfgs |
|
from .vision_transformer import Attention |
|
|
|
__all__ = ['Twins'] |
|
|
|
Size_ = Tuple[int, int] |
|
|
|
|
|
@register_notrace_module |
|
class LocallyGroupedAttn(nn.Module): |
|
""" LSA: self attention within a group |
|
""" |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1): |
|
assert ws != 1 |
|
super(LocallyGroupedAttn, self).__init__() |
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
|
self.dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.ws = ws |
|
|
|
def forward(self, x, size: Size_): |
|
|
|
|
|
|
|
B, N, C = x.shape |
|
H, W = size |
|
x = x.view(B, H, W, C) |
|
pad_l = pad_t = 0 |
|
pad_r = (self.ws - W % self.ws) % self.ws |
|
pad_b = (self.ws - H % self.ws) % self.ws |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
_, Hp, Wp, _ = x.shape |
|
_h, _w = Hp // self.ws, Wp // self.ws |
|
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) |
|
qkv = self.qkv(x).reshape( |
|
B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) |
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.fused_attn: |
|
x = F.scaled_dot_product_attention( |
|
q, k, v, |
|
dropout_p=self.attn_drop.p, |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C) |
|
x = x.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C) |
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :H, :W, :].contiguous() |
|
x = x.reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GlobalSubSampleAttn(nn.Module): |
|
""" GSA: using a key to summarize the information for a group to be efficient. |
|
""" |
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1): |
|
super().__init__() |
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
|
self.dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.q = nn.Linear(dim, dim, bias=True) |
|
self.kv = nn.Linear(dim, dim * 2, bias=True) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.sr_ratio = sr_ratio |
|
if sr_ratio > 1: |
|
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) |
|
self.norm = nn.LayerNorm(dim) |
|
else: |
|
self.sr = None |
|
self.norm = None |
|
|
|
def forward(self, x, size: Size_): |
|
B, N, C = x.shape |
|
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
if self.sr is not None: |
|
x = x.permute(0, 2, 1).reshape(B, C, *size) |
|
x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1) |
|
x = self.norm(x) |
|
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
k, v = kv.unbind(0) |
|
|
|
if self.fused_attn: |
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, |
|
dropout_p=self.attn_drop.p, |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4., |
|
proj_drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
sr_ratio=1, |
|
ws=None, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
if ws is None: |
|
self.attn = Attention(dim, num_heads, False, None, attn_drop, proj_drop) |
|
elif ws == 1: |
|
self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, proj_drop, sr_ratio) |
|
else: |
|
self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, proj_drop, ws) |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
act_layer=act_layer, |
|
drop=proj_drop, |
|
) |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x, size: Size_): |
|
x = x + self.drop_path1(self.attn(self.norm1(x), size)) |
|
x = x + self.drop_path2(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PosConv(nn.Module): |
|
|
|
def __init__(self, in_chans, embed_dim=768, stride=1): |
|
super(PosConv, self).__init__() |
|
self.proj = nn.Sequential( |
|
nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim), |
|
) |
|
self.stride = stride |
|
|
|
def forward(self, x, size: Size_): |
|
B, N, C = x.shape |
|
cnn_feat_token = x.transpose(1, 2).view(B, C, *size) |
|
x = self.proj(cnn_feat_token) |
|
if self.stride == 1: |
|
x += cnn_feat_token |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
def no_weight_decay(self): |
|
return ['proj.%d.weight' % i for i in range(4)] |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
|
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ |
|
f"img_size {img_size} should be divided by patch_size {patch_size}." |
|
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] |
|
self.num_patches = self.H * self.W |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
self.norm = nn.LayerNorm(embed_dim) |
|
|
|
def forward(self, x) -> Tuple[torch.Tensor, Size_]: |
|
B, C, H, W = x.shape |
|
|
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
out_size = (H // self.patch_size[0], W // self.patch_size[1]) |
|
|
|
return x, out_size |
|
|
|
|
|
class Twins(nn.Module): |
|
""" Twins Vision Transfomer (Revisiting Spatial Attention) |
|
|
|
Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git |
|
""" |
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=4, |
|
in_chans=3, |
|
num_classes=1000, |
|
global_pool='avg', |
|
embed_dims=(64, 128, 256, 512), |
|
num_heads=(1, 2, 4, 8), |
|
mlp_ratios=(4, 4, 4, 4), |
|
depths=(3, 4, 6, 3), |
|
sr_ratios=(8, 4, 2, 1), |
|
wss=None, |
|
drop_rate=0., |
|
pos_drop_rate=0., |
|
proj_drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
block_cls=Block, |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.depths = depths |
|
self.embed_dims = embed_dims |
|
self.num_features = embed_dims[-1] |
|
self.grad_checkpointing = False |
|
|
|
img_size = to_2tuple(img_size) |
|
prev_chs = in_chans |
|
self.patch_embeds = nn.ModuleList() |
|
self.pos_drops = nn.ModuleList() |
|
for i in range(len(depths)): |
|
self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i])) |
|
self.pos_drops.append(nn.Dropout(p=pos_drop_rate)) |
|
prev_chs = embed_dims[i] |
|
img_size = tuple(t // patch_size for t in img_size) |
|
patch_size = 2 |
|
|
|
self.blocks = nn.ModuleList() |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
for k in range(len(depths)): |
|
_block = nn.ModuleList([block_cls( |
|
dim=embed_dims[k], |
|
num_heads=num_heads[k], |
|
mlp_ratio=mlp_ratios[k], |
|
proj_drop=proj_drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[cur + i], |
|
norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[k], |
|
ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])], |
|
) |
|
self.blocks.append(_block) |
|
cur += depths[k] |
|
|
|
self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims]) |
|
|
|
self.norm = norm_layer(self.num_features) |
|
|
|
|
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()]) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^patch_embeds.0', |
|
blocks=[ |
|
(r'^(?:blocks|patch_embeds|pos_block)\.(\d+)', None), |
|
('^norm', (99999,)) |
|
] if coarse else [ |
|
(r'^blocks\.(\d+)\.(\d+)', None), |
|
(r'^(?:patch_embeds|pos_block)\.(\d+)', (0,)), |
|
(r'^norm', (99999,)) |
|
] |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
assert not enable, 'gradient checkpointing not supported' |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
assert global_pool in ('', 'avg') |
|
self.global_pool = global_pool |
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward_features(self, x): |
|
B = x.shape[0] |
|
for i, (embed, drop, blocks, pos_blk) in enumerate( |
|
zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)): |
|
x, size = embed(x) |
|
x = drop(x) |
|
for j, blk in enumerate(blocks): |
|
x = blk(x, size) |
|
if j == 0: |
|
x = pos_blk(x, size) |
|
if i < len(self.depths) - 1: |
|
x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous() |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
if self.global_pool == 'avg': |
|
x = x.mean(dim=1) |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _create_twins(variant, pretrained=False, **kwargs): |
|
if kwargs.get('features_only', None): |
|
raise RuntimeError('features_only not implemented for Vision Transformer models.') |
|
|
|
model = build_model_with_cfg(Twins, variant, pretrained, **kwargs) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embeds.0.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'twins_pcpvt_small.in1k': _cfg(hf_hub_id='timm/'), |
|
'twins_pcpvt_base.in1k': _cfg(hf_hub_id='timm/'), |
|
'twins_pcpvt_large.in1k': _cfg(hf_hub_id='timm/'), |
|
'twins_svt_small.in1k': _cfg(hf_hub_id='timm/'), |
|
'twins_svt_base.in1k': _cfg(hf_hub_id='timm/'), |
|
'twins_svt_large.in1k': _cfg(hf_hub_id='timm/'), |
|
}) |
|
|
|
|
|
@register_model |
|
def twins_pcpvt_small(pretrained=False, **kwargs) -> Twins: |
|
model_args = dict( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], |
|
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]) |
|
return _create_twins('twins_pcpvt_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def twins_pcpvt_base(pretrained=False, **kwargs) -> Twins: |
|
model_args = dict( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], |
|
depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1]) |
|
return _create_twins('twins_pcpvt_base', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def twins_pcpvt_large(pretrained=False, **kwargs) -> Twins: |
|
model_args = dict( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], |
|
depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1]) |
|
return _create_twins('twins_pcpvt_large', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def twins_svt_small(pretrained=False, **kwargs) -> Twins: |
|
model_args = dict( |
|
patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4], |
|
depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1]) |
|
return _create_twins('twins_svt_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def twins_svt_base(pretrained=False, **kwargs) -> Twins: |
|
model_args = dict( |
|
patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4], |
|
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1]) |
|
return _create_twins('twins_svt_base', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def twins_svt_large(pretrained=False, **kwargs) -> Twins: |
|
model_args = dict( |
|
patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4], |
|
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1]) |
|
return _create_twins('twins_svt_large', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|