|
""" |
|
TResNet: High Performance GPU-Dedicated Architecture |
|
https://arxiv.org/pdf/2003.13630.pdf |
|
|
|
Original model: https://github.com/mrT23/TResNet |
|
|
|
""" |
|
from collections import OrderedDict |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.layers import SpaceToDepth, BlurPool2d, ClassifierHead, SEModule,\ |
|
ConvNormActAa, ConvNormAct, DropPath |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import register_model, generate_default_cfgs, register_model_deprecations |
|
|
|
__all__ = ['TResNet'] |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
use_se=True, |
|
aa_layer=None, |
|
drop_path_rate=0. |
|
): |
|
super(BasicBlock, self).__init__() |
|
self.downsample = downsample |
|
self.stride = stride |
|
act_layer = partial(nn.LeakyReLU, negative_slope=1e-3) |
|
|
|
if stride == 1: |
|
self.conv1 = ConvNormAct(inplanes, planes, kernel_size=3, stride=1, act_layer=act_layer) |
|
else: |
|
self.conv1 = ConvNormActAa( |
|
inplanes, planes, kernel_size=3, stride=2, act_layer=act_layer, aa_layer=aa_layer) |
|
|
|
self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=1, apply_act=False, act_layer=None) |
|
self.act = nn.ReLU(inplace=True) |
|
|
|
rd_chs = max(planes * self.expansion // 4, 64) |
|
self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None |
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() |
|
|
|
def forward(self, x): |
|
if self.downsample is not None: |
|
shortcut = self.downsample(x) |
|
else: |
|
shortcut = x |
|
out = self.conv1(x) |
|
out = self.conv2(out) |
|
if self.se is not None: |
|
out = self.se(out) |
|
out = self.drop_path(out) + shortcut |
|
out = self.act(out) |
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
use_se=True, |
|
act_layer=None, |
|
aa_layer=None, |
|
drop_path_rate=0., |
|
): |
|
super(Bottleneck, self).__init__() |
|
self.downsample = downsample |
|
self.stride = stride |
|
act_layer = act_layer or partial(nn.LeakyReLU, negative_slope=1e-3) |
|
|
|
self.conv1 = ConvNormAct( |
|
inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer) |
|
if stride == 1: |
|
self.conv2 = ConvNormAct( |
|
planes, planes, kernel_size=3, stride=1, act_layer=act_layer) |
|
else: |
|
self.conv2 = ConvNormActAa( |
|
planes, planes, kernel_size=3, stride=2, act_layer=act_layer, aa_layer=aa_layer) |
|
|
|
reduction_chs = max(planes * self.expansion // 8, 64) |
|
self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None |
|
|
|
self.conv3 = ConvNormAct( |
|
planes, planes * self.expansion, kernel_size=1, stride=1, apply_act=False, act_layer=None) |
|
|
|
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() |
|
self.act = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
if self.downsample is not None: |
|
shortcut = self.downsample(x) |
|
else: |
|
shortcut = x |
|
out = self.conv1(x) |
|
out = self.conv2(out) |
|
if self.se is not None: |
|
out = self.se(out) |
|
out = self.conv3(out) |
|
out = self.drop_path(out) + shortcut |
|
out = self.act(out) |
|
return out |
|
|
|
|
|
class TResNet(nn.Module): |
|
def __init__( |
|
self, |
|
layers, |
|
in_chans=3, |
|
num_classes=1000, |
|
width_factor=1.0, |
|
v2=False, |
|
global_pool='fast', |
|
drop_rate=0., |
|
drop_path_rate=0., |
|
): |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
self.grad_checkpointing = False |
|
super(TResNet, self).__init__() |
|
|
|
aa_layer = BlurPool2d |
|
act_layer = nn.LeakyReLU |
|
|
|
|
|
self.inplanes = int(64 * width_factor) |
|
self.planes = int(64 * width_factor) |
|
if v2: |
|
self.inplanes = self.inplanes // 8 * 8 |
|
self.planes = self.planes // 8 * 8 |
|
|
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] |
|
conv1 = ConvNormAct(in_chans * 16, self.planes, stride=1, kernel_size=3, act_layer=act_layer) |
|
layer1 = self._make_layer( |
|
Bottleneck if v2 else BasicBlock, |
|
self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[0]) |
|
layer2 = self._make_layer( |
|
Bottleneck if v2 else BasicBlock, |
|
self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[1]) |
|
layer3 = self._make_layer( |
|
Bottleneck, |
|
self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[2]) |
|
layer4 = self._make_layer( |
|
Bottleneck, |
|
self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer, drop_path_rate=dpr[3]) |
|
|
|
|
|
self.body = nn.Sequential(OrderedDict([ |
|
('s2d', SpaceToDepth()), |
|
('conv1', conv1), |
|
('layer1', layer1), |
|
('layer2', layer2), |
|
('layer3', layer3), |
|
('layer4', layer4), |
|
])) |
|
|
|
self.feature_info = [ |
|
dict(num_chs=self.planes, reduction=2, module=''), |
|
dict(num_chs=self.planes * (Bottleneck.expansion if v2 else 1), reduction=4, module='body.layer1'), |
|
dict(num_chs=self.planes * 2 * (Bottleneck.expansion if v2 else 1), reduction=8, module='body.layer2'), |
|
dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'), |
|
dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'), |
|
] |
|
|
|
|
|
self.num_features = (self.planes * 8) * Bottleneck.expansion |
|
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') |
|
if isinstance(m, nn.Linear): |
|
m.weight.data.normal_(0, 0.01) |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, BasicBlock): |
|
nn.init.zeros_(m.conv2.bn.weight) |
|
if isinstance(m, Bottleneck): |
|
nn.init.zeros_(m.conv3.bn.weight) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None, drop_path_rate=0.): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
layers = [] |
|
if stride == 2: |
|
|
|
layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) |
|
layers += [ConvNormAct( |
|
self.inplanes, planes * block.expansion, kernel_size=1, stride=1, apply_act=False, act_layer=None)] |
|
downsample = nn.Sequential(*layers) |
|
|
|
layers = [] |
|
for i in range(blocks): |
|
layers.append(block( |
|
self.inplanes, |
|
planes, |
|
stride=stride if i == 0 else 1, |
|
downsample=downsample if i == 0 else None, |
|
use_se=use_se, |
|
aa_layer=aa_layer, |
|
drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate, |
|
)) |
|
self.inplanes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict(stem=r'^body\.conv1', blocks=r'^body\.layer(\d+)' if coarse else r'^body\.layer(\d+)\.(\d+)') |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes, global_pool=None): |
|
self.head.reset(num_classes, pool_type=global_pool) |
|
|
|
def forward_features(self, x): |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = self.body.s2d(x) |
|
x = self.body.conv1(x) |
|
x = checkpoint_seq([ |
|
self.body.layer1, |
|
self.body.layer2, |
|
self.body.layer3, |
|
self.body.layer4], |
|
x, flatten=True) |
|
else: |
|
x = self.body(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return x if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
if 'body.conv1.conv.weight' in state_dict: |
|
return state_dict |
|
|
|
import re |
|
state_dict = state_dict.get('model', state_dict) |
|
state_dict = state_dict.get('state_dict', state_dict) |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
k = re.sub(r'conv(\d+)\.0.0', lambda x: f'conv{int(x.group(1))}.conv', k) |
|
k = re.sub(r'conv(\d+)\.0.1', lambda x: f'conv{int(x.group(1))}.bn', k) |
|
k = re.sub(r'conv(\d+)\.0', lambda x: f'conv{int(x.group(1))}.conv', k) |
|
k = re.sub(r'conv(\d+)\.1', lambda x: f'conv{int(x.group(1))}.bn', k) |
|
k = re.sub(r'downsample\.(\d+)\.0', lambda x: f'downsample.{int(x.group(1))}.conv', k) |
|
k = re.sub(r'downsample\.(\d+)\.1', lambda x: f'downsample.{int(x.group(1))}.bn', k) |
|
if k.endswith('bn.weight'): |
|
|
|
v = v.abs().add(1e-5) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_tresnet(variant, pretrained=False, **kwargs): |
|
return build_model_with_cfg( |
|
TResNet, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True), |
|
**kwargs, |
|
) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bilinear', |
|
'mean': (0., 0., 0.), 'std': (1., 1., 1.), |
|
'first_conv': 'body.conv1.conv', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'tresnet_m.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), |
|
'tresnet_m.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221), |
|
'tresnet_m.miil_in1k': _cfg(hf_hub_id='timm/'), |
|
'tresnet_l.miil_in1k': _cfg(hf_hub_id='timm/'), |
|
'tresnet_xl.miil_in1k': _cfg(hf_hub_id='timm/'), |
|
'tresnet_m.miil_in1k_448': _cfg( |
|
input_size=(3, 448, 448), pool_size=(14, 14), |
|
hf_hub_id='timm/'), |
|
'tresnet_l.miil_in1k_448': _cfg( |
|
input_size=(3, 448, 448), pool_size=(14, 14), |
|
hf_hub_id='timm/'), |
|
'tresnet_xl.miil_in1k_448': _cfg( |
|
input_size=(3, 448, 448), pool_size=(14, 14), |
|
hf_hub_id='timm/'), |
|
|
|
'tresnet_v2_l.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), |
|
'tresnet_v2_l.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221), |
|
}) |
|
|
|
|
|
@register_model |
|
def tresnet_m(pretrained=False, **kwargs) -> TResNet: |
|
model_kwargs = dict(layers=[3, 4, 11, 3], **kwargs) |
|
return _create_tresnet('tresnet_m', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def tresnet_l(pretrained=False, **kwargs) -> TResNet: |
|
model_kwargs = dict(layers=[4, 5, 18, 3], width_factor=1.2, **kwargs) |
|
return _create_tresnet('tresnet_l', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def tresnet_xl(pretrained=False, **kwargs) -> TResNet: |
|
model_kwargs = dict(layers=[4, 5, 24, 3], width_factor=1.3, **kwargs) |
|
return _create_tresnet('tresnet_xl', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
@register_model |
|
def tresnet_v2_l(pretrained=False, **kwargs) -> TResNet: |
|
model_kwargs = dict(layers=[3, 4, 23, 3], width_factor=1.0, v2=True, **kwargs) |
|
return _create_tresnet('tresnet_v2_l', pretrained=pretrained, **model_kwargs) |
|
|
|
|
|
register_model_deprecations(__name__, { |
|
'tresnet_m_miil_in21k': 'tresnet_m.miil_in21k', |
|
'tresnet_m_448': 'tresnet_m.miil_in1k_448', |
|
'tresnet_l_448': 'tresnet_l.miil_in1k_448', |
|
'tresnet_xl_448': 'tresnet_xl.miil_in1k_448', |
|
}) |