|
""" Pooling-based Vision Transformer (PiT) in PyTorch |
|
|
|
A PyTorch implement of Pooling-based Vision Transformers as described in |
|
'Rethinking Spatial Dimensions of Vision Transformers' - https://arxiv.org/abs/2103.16302 |
|
|
|
This code was adapted from the original version at https://github.com/naver-ai/pit, original copyright below. |
|
|
|
Modifications for timm by / Copyright 2020 Ross Wightman |
|
""" |
|
|
|
|
|
|
|
|
|
import math |
|
import re |
|
from functools import partial |
|
from typing import Sequence, Tuple |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import trunc_normal_, to_2tuple, LayerNorm |
|
from ._builder import build_model_with_cfg |
|
from ._registry import register_model, generate_default_cfgs |
|
from .vision_transformer import Block |
|
|
|
|
|
__all__ = ['PoolingVisionTransformer'] |
|
|
|
|
|
class SequentialTuple(nn.Sequential): |
|
""" This module exists to work around torchscript typing issues list -> list""" |
|
def __init__(self, *args): |
|
super(SequentialTuple, self).__init__(*args) |
|
|
|
def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: |
|
for module in self: |
|
x = module(x) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
base_dim, |
|
depth, |
|
heads, |
|
mlp_ratio, |
|
pool=None, |
|
proj_drop=.0, |
|
attn_drop=.0, |
|
drop_path_prob=None, |
|
norm_layer=None, |
|
): |
|
super(Transformer, self).__init__() |
|
embed_dim = base_dim * heads |
|
|
|
self.pool = pool |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
self.blocks = nn.Sequential(*[ |
|
Block( |
|
dim=embed_dim, |
|
num_heads=heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=True, |
|
proj_drop=proj_drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path_prob[i], |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6) |
|
) |
|
for i in range(depth)]) |
|
|
|
def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: |
|
x, cls_tokens = x |
|
token_length = cls_tokens.shape[1] |
|
if self.pool is not None: |
|
x, cls_tokens = self.pool(x, cls_tokens) |
|
|
|
B, C, H, W = x.shape |
|
x = x.flatten(2).transpose(1, 2) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
x = self.norm(x) |
|
x = self.blocks(x) |
|
|
|
cls_tokens = x[:, :token_length] |
|
x = x[:, token_length:] |
|
x = x.transpose(1, 2).reshape(B, C, H, W) |
|
|
|
return x, cls_tokens |
|
|
|
|
|
class Pooling(nn.Module): |
|
def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'): |
|
super(Pooling, self).__init__() |
|
|
|
self.conv = nn.Conv2d( |
|
in_feature, |
|
out_feature, |
|
kernel_size=stride + 1, |
|
padding=stride // 2, |
|
stride=stride, |
|
padding_mode=padding_mode, |
|
groups=in_feature, |
|
) |
|
self.fc = nn.Linear(in_feature, out_feature) |
|
|
|
def forward(self, x, cls_token) -> Tuple[torch.Tensor, torch.Tensor]: |
|
x = self.conv(x) |
|
cls_token = self.fc(cls_token) |
|
return x, cls_token |
|
|
|
|
|
class ConvEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
img_size: int = 224, |
|
patch_size: int = 16, |
|
stride: int = 8, |
|
padding: int = 0, |
|
): |
|
super(ConvEmbedding, self).__init__() |
|
padding = padding |
|
self.img_size = to_2tuple(img_size) |
|
self.patch_size = to_2tuple(patch_size) |
|
self.height = math.floor((self.img_size[0] + 2 * padding - self.patch_size[0]) / stride + 1) |
|
self.width = math.floor((self.img_size[1] + 2 * padding - self.patch_size[1]) / stride + 1) |
|
self.grid_size = (self.height, self.width) |
|
|
|
self.conv = nn.Conv2d( |
|
in_channels, out_channels, kernel_size=patch_size, |
|
stride=stride, padding=padding, bias=True) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class PoolingVisionTransformer(nn.Module): |
|
""" Pooling-based Vision Transformer |
|
|
|
A PyTorch implement of 'Rethinking Spatial Dimensions of Vision Transformers' |
|
- https://arxiv.org/abs/2103.16302 |
|
""" |
|
def __init__( |
|
self, |
|
img_size: int = 224, |
|
patch_size: int = 16, |
|
stride: int = 8, |
|
stem_type: str = 'overlap', |
|
base_dims: Sequence[int] = (48, 48, 48), |
|
depth: Sequence[int] = (2, 6, 4), |
|
heads: Sequence[int] = (2, 4, 8), |
|
mlp_ratio: float = 4, |
|
num_classes=1000, |
|
in_chans=3, |
|
global_pool='token', |
|
distilled=False, |
|
drop_rate=0., |
|
pos_drop_drate=0., |
|
proj_drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
): |
|
super(PoolingVisionTransformer, self).__init__() |
|
assert global_pool in ('token',) |
|
|
|
self.base_dims = base_dims |
|
self.heads = heads |
|
embed_dim = base_dims[0] * heads[0] |
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.num_tokens = 2 if distilled else 1 |
|
self.feature_info = [] |
|
|
|
self.patch_embed = ConvEmbedding(in_chans, embed_dim, img_size, patch_size, stride) |
|
self.pos_embed = nn.Parameter(torch.randn(1, embed_dim, self.patch_embed.height, self.patch_embed.width)) |
|
self.cls_token = nn.Parameter(torch.randn(1, self.num_tokens, embed_dim)) |
|
self.pos_drop = nn.Dropout(p=pos_drop_drate) |
|
|
|
transformers = [] |
|
|
|
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depth)).split(depth)] |
|
prev_dim = embed_dim |
|
for i in range(len(depth)): |
|
pool = None |
|
embed_dim = base_dims[i] * heads[i] |
|
if i > 0: |
|
pool = Pooling( |
|
prev_dim, |
|
embed_dim, |
|
stride=2, |
|
) |
|
transformers += [Transformer( |
|
base_dims[i], |
|
depth[i], |
|
heads[i], |
|
mlp_ratio, |
|
pool=pool, |
|
proj_drop=proj_drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path_prob=dpr[i], |
|
)] |
|
prev_dim = embed_dim |
|
self.feature_info += [dict(num_chs=prev_dim, reduction=(stride - 1) * 2**i, module=f'transformers.{i}')] |
|
|
|
self.transformers = SequentialTuple(*transformers) |
|
self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-6) |
|
self.num_features = self.embed_dim = embed_dim |
|
|
|
|
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
self.head_dist = None |
|
if distilled: |
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() |
|
self.distilled_training = False |
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
@torch.jit.ignore |
|
def set_distilled_training(self, enable=True): |
|
self.distilled_training = enable |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
assert not enable, 'gradient checkpointing not supported' |
|
|
|
def get_classifier(self): |
|
if self.head_dist is not None: |
|
return self.head, self.head_dist |
|
else: |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=None): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
if self.head_dist is not None: |
|
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
x = self.pos_drop(x + self.pos_embed) |
|
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) |
|
x, cls_tokens = self.transformers((x, cls_tokens)) |
|
cls_tokens = self.norm(cls_tokens) |
|
return cls_tokens |
|
|
|
def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: |
|
if self.head_dist is not None: |
|
assert self.global_pool == 'token' |
|
x, x_dist = x[:, 0], x[:, 1] |
|
x = self.head_drop(x) |
|
x_dist = self.head_drop(x) |
|
if not pre_logits: |
|
x = self.head(x) |
|
x_dist = self.head_dist(x_dist) |
|
if self.distilled_training and self.training and not torch.jit.is_scripting(): |
|
|
|
return x, x_dist |
|
else: |
|
|
|
return (x + x_dist) / 2 |
|
else: |
|
if self.global_pool == 'token': |
|
x = x[:, 0] |
|
x = self.head_drop(x) |
|
if not pre_logits: |
|
x = self.head(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
""" preprocess checkpoints """ |
|
out_dict = {} |
|
p_blocks = re.compile(r'pools\.(\d)\.') |
|
for k, v in state_dict.items(): |
|
|
|
|
|
|
|
|
|
k = p_blocks.sub(lambda exp: f'transformers.{int(exp.group(1)) + 1}.pool.', k) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_pit(variant, pretrained=False, **kwargs): |
|
default_out_indices = tuple(range(3)) |
|
out_indices = kwargs.pop('out_indices', default_out_indices) |
|
|
|
model = build_model_with_cfg( |
|
PoolingVisionTransformer, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(feature_cls='hook', no_rewrite=True, out_indices=out_indices), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.conv', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
|
|
'pit_ti_224.in1k': _cfg(hf_hub_id='timm/'), |
|
'pit_xs_224.in1k': _cfg(hf_hub_id='timm/'), |
|
'pit_s_224.in1k': _cfg(hf_hub_id='timm/'), |
|
'pit_b_224.in1k': _cfg(hf_hub_id='timm/'), |
|
'pit_ti_distilled_224.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier=('head', 'head_dist')), |
|
'pit_xs_distilled_224.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier=('head', 'head_dist')), |
|
'pit_s_distilled_224.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier=('head', 'head_dist')), |
|
'pit_b_distilled_224.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
classifier=('head', 'head_dist')), |
|
}) |
|
|
|
|
|
@register_model |
|
def pit_b_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: |
|
model_args = dict( |
|
patch_size=14, |
|
stride=7, |
|
base_dims=[64, 64, 64], |
|
depth=[3, 6, 4], |
|
heads=[4, 8, 16], |
|
mlp_ratio=4, |
|
) |
|
return _create_pit('pit_b_224', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def pit_s_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: |
|
model_args = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[48, 48, 48], |
|
depth=[2, 6, 4], |
|
heads=[3, 6, 12], |
|
mlp_ratio=4, |
|
) |
|
return _create_pit('pit_s_224', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def pit_xs_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: |
|
model_args = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[48, 48, 48], |
|
depth=[2, 6, 4], |
|
heads=[2, 4, 8], |
|
mlp_ratio=4, |
|
) |
|
return _create_pit('pit_xs_224', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def pit_ti_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: |
|
model_args = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[32, 32, 32], |
|
depth=[2, 6, 4], |
|
heads=[2, 4, 8], |
|
mlp_ratio=4, |
|
) |
|
return _create_pit('pit_ti_224', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def pit_b_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: |
|
model_args = dict( |
|
patch_size=14, |
|
stride=7, |
|
base_dims=[64, 64, 64], |
|
depth=[3, 6, 4], |
|
heads=[4, 8, 16], |
|
mlp_ratio=4, |
|
distilled=True, |
|
) |
|
return _create_pit('pit_b_distilled_224', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def pit_s_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: |
|
model_args = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[48, 48, 48], |
|
depth=[2, 6, 4], |
|
heads=[3, 6, 12], |
|
mlp_ratio=4, |
|
distilled=True, |
|
) |
|
return _create_pit('pit_s_distilled_224', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def pit_xs_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: |
|
model_args = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[48, 48, 48], |
|
depth=[2, 6, 4], |
|
heads=[2, 4, 8], |
|
mlp_ratio=4, |
|
distilled=True, |
|
) |
|
return _create_pit('pit_xs_distilled_224', pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def pit_ti_distilled_224(pretrained=False, **kwargs) -> PoolingVisionTransformer: |
|
model_args = dict( |
|
patch_size=16, |
|
stride=8, |
|
base_dims=[32, 32, 32], |
|
depth=[2, 6, 4], |
|
heads=[2, 4, 8], |
|
mlp_ratio=4, |
|
distilled=True, |
|
) |
|
return _create_pit('pit_ti_distilled_224', pretrained, **dict(model_args, **kwargs)) |
|
|