|
""" MobileNet V3 |
|
|
|
A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl. |
|
|
|
Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244 |
|
|
|
Hacked together by / Copyright 2019, Ross Wightman |
|
""" |
|
from functools import partial |
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD |
|
from timm.layers import SelectAdaptivePool2d, Linear, create_conv2d, get_norm_act_layer |
|
from ._builder import build_model_with_cfg, pretrained_cfg_for_features |
|
from ._efficientnet_blocks import SqueezeExcite |
|
from ._efficientnet_builder import EfficientNetBuilder, decode_arch_def, efficientnet_init_weights, \ |
|
round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT |
|
from ._features import FeatureInfo, FeatureHooks |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import generate_default_cfgs, register_model, register_model_deprecations |
|
|
|
__all__ = ['MobileNetV3', 'MobileNetV3Features'] |
|
|
|
|
|
class MobileNetV3(nn.Module): |
|
""" MobiletNet-V3 |
|
|
|
Based on my EfficientNet implementation and building blocks, this model utilizes the MobileNet-v3 specific |
|
'efficient head', where global pooling is done before the head convolution without a final batch-norm |
|
layer before the classifier. |
|
|
|
Paper: `Searching for MobileNetV3` - https://arxiv.org/abs/1905.02244 |
|
|
|
Other architectures utilizing MobileNet-V3 efficient head that are supported by this impl include: |
|
* HardCoRe-NAS - https://arxiv.org/abs/2102.11646 (defn in hardcorenas.py uses this class) |
|
* FBNet-V3 - https://arxiv.org/abs/2006.02049 |
|
* LCNet - https://arxiv.org/abs/2109.15099 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
block_args, |
|
num_classes=1000, |
|
in_chans=3, |
|
stem_size=16, |
|
fix_stem=False, |
|
num_features=1280, |
|
head_bias=True, |
|
pad_type='', |
|
act_layer=None, |
|
norm_layer=None, |
|
se_layer=None, |
|
se_from_exp=True, |
|
round_chs_fn=round_channels, |
|
drop_rate=0., |
|
drop_path_rate=0., |
|
global_pool='avg', |
|
): |
|
super(MobileNetV3, self).__init__() |
|
act_layer = act_layer or nn.ReLU |
|
norm_layer = norm_layer or nn.BatchNorm2d |
|
norm_act_layer = get_norm_act_layer(norm_layer, act_layer) |
|
se_layer = se_layer or SqueezeExcite |
|
self.num_classes = num_classes |
|
self.num_features = num_features |
|
self.drop_rate = drop_rate |
|
self.grad_checkpointing = False |
|
|
|
|
|
if not fix_stem: |
|
stem_size = round_chs_fn(stem_size) |
|
self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) |
|
self.bn1 = norm_act_layer(stem_size, inplace=True) |
|
|
|
|
|
builder = EfficientNetBuilder( |
|
output_stride=32, |
|
pad_type=pad_type, |
|
round_chs_fn=round_chs_fn, |
|
se_from_exp=se_from_exp, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
se_layer=se_layer, |
|
drop_path_rate=drop_path_rate, |
|
) |
|
self.blocks = nn.Sequential(*builder(stem_size, block_args)) |
|
self.feature_info = builder.features |
|
head_chs = builder.in_chs |
|
|
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) |
|
num_pooled_chs = head_chs * self.global_pool.feat_mult() |
|
self.conv_head = create_conv2d(num_pooled_chs, self.num_features, 1, padding=pad_type, bias=head_bias) |
|
self.act2 = act_layer(inplace=True) |
|
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() |
|
self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
efficientnet_init_weights(self) |
|
|
|
def as_sequential(self): |
|
layers = [self.conv_stem, self.bn1] |
|
layers.extend(self.blocks) |
|
layers.extend([self.global_pool, self.conv_head, self.act2]) |
|
layers.extend([nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) |
|
return nn.Sequential(*layers) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^conv_stem|bn1', |
|
blocks=r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)' |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.classifier |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.num_classes = num_classes |
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) |
|
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() |
|
self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
x = self.conv_stem(x) |
|
x = self.bn1(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x, flatten=True) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
x = self.global_pool(x) |
|
x = self.conv_head(x) |
|
x = self.act2(x) |
|
x = self.flatten(x) |
|
if pre_logits: |
|
return x |
|
if self.drop_rate > 0.: |
|
x = F.dropout(x, p=self.drop_rate, training=self.training) |
|
return self.classifier(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
class MobileNetV3Features(nn.Module): |
|
""" MobileNetV3 Feature Extractor |
|
|
|
A work-in-progress feature extraction module for MobileNet-V3 to use as a backbone for segmentation |
|
and object detection models. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
block_args, |
|
out_indices=(0, 1, 2, 3, 4), |
|
feature_location='bottleneck', |
|
in_chans=3, |
|
stem_size=16, |
|
fix_stem=False, |
|
output_stride=32, |
|
pad_type='', |
|
round_chs_fn=round_channels, |
|
se_from_exp=True, |
|
act_layer=None, |
|
norm_layer=None, |
|
se_layer=None, |
|
drop_rate=0., |
|
drop_path_rate=0., |
|
): |
|
super(MobileNetV3Features, self).__init__() |
|
act_layer = act_layer or nn.ReLU |
|
norm_layer = norm_layer or nn.BatchNorm2d |
|
se_layer = se_layer or SqueezeExcite |
|
self.drop_rate = drop_rate |
|
self.grad_checkpointing = False |
|
|
|
|
|
if not fix_stem: |
|
stem_size = round_chs_fn(stem_size) |
|
self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) |
|
self.bn1 = norm_layer(stem_size) |
|
self.act1 = act_layer(inplace=True) |
|
|
|
|
|
builder = EfficientNetBuilder( |
|
output_stride=output_stride, |
|
pad_type=pad_type, |
|
round_chs_fn=round_chs_fn, |
|
se_from_exp=se_from_exp, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
se_layer=se_layer, |
|
drop_path_rate=drop_path_rate, |
|
feature_location=feature_location, |
|
) |
|
self.blocks = nn.Sequential(*builder(stem_size, block_args)) |
|
self.feature_info = FeatureInfo(builder.features, out_indices) |
|
self._stage_out_idx = {v['stage']: i for i, v in enumerate(self.feature_info) if i in out_indices} |
|
|
|
efficientnet_init_weights(self) |
|
|
|
|
|
self.feature_hooks = None |
|
if feature_location != 'bottleneck': |
|
hooks = self.feature_info.get_dicts(keys=('module', 'hook_type')) |
|
self.feature_hooks = FeatureHooks(hooks, self.named_modules()) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
def forward(self, x) -> List[torch.Tensor]: |
|
x = self.conv_stem(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
if self.feature_hooks is None: |
|
features = [] |
|
if 0 in self._stage_out_idx: |
|
features.append(x) |
|
for i, b in enumerate(self.blocks): |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(b, x) |
|
else: |
|
x = b(x) |
|
if i + 1 in self._stage_out_idx: |
|
features.append(x) |
|
return features |
|
else: |
|
self.blocks(x) |
|
out = self.feature_hooks.get_output(x.device) |
|
return list(out.values()) |
|
|
|
|
|
def _create_mnv3(variant, pretrained=False, **kwargs): |
|
features_only = False |
|
model_cls = MobileNetV3 |
|
kwargs_filter = None |
|
if kwargs.pop('features_only', False): |
|
features_only = True |
|
kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'global_pool') |
|
model_cls = MobileNetV3Features |
|
model = build_model_with_cfg( |
|
model_cls, |
|
variant, |
|
pretrained, |
|
pretrained_strict=not features_only, |
|
kwargs_filter=kwargs_filter, |
|
**kwargs) |
|
if features_only: |
|
model.default_cfg = pretrained_cfg_for_features(model.default_cfg) |
|
return model |
|
|
|
|
|
def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a MobileNet-V3 model. |
|
|
|
Ref impl: ? |
|
Paper: https://arxiv.org/abs/1905.02244 |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_e1_c16_nre_noskip'], |
|
|
|
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], |
|
|
|
['ir_r3_k5_s2_e3_c40_se0.25_nre'], |
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], |
|
|
|
['ir_r2_k3_s1_e6_c112_se0.25'], |
|
|
|
['ir_r3_k5_s2_e6_c160_se0.25'], |
|
|
|
['cn_r1_k1_s1_c960'], |
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
head_bias=False, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'hard_swish'), |
|
se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid'), |
|
**kwargs, |
|
) |
|
model = _create_mnv3(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
"""Creates a MobileNet-V3 model. |
|
|
|
Ref impl: ? |
|
Paper: https://arxiv.org/abs/1905.02244 |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
if 'small' in variant: |
|
num_features = 1024 |
|
if 'minimal' in variant: |
|
act_layer = resolve_act_layer(kwargs, 'relu') |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s2_e1_c16'], |
|
|
|
['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'], |
|
|
|
['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'], |
|
|
|
['ir_r2_k3_s1_e3_c48'], |
|
|
|
['ir_r3_k3_s2_e6_c96'], |
|
|
|
['cn_r1_k1_s1_c576'], |
|
] |
|
else: |
|
act_layer = resolve_act_layer(kwargs, 'hard_swish') |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s2_e1_c16_se0.25_nre'], |
|
|
|
['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], |
|
|
|
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], |
|
|
|
['ir_r2_k5_s1_e3_c48_se0.25'], |
|
|
|
['ir_r3_k5_s2_e6_c96_se0.25'], |
|
|
|
['cn_r1_k1_s1_c576'], |
|
] |
|
else: |
|
num_features = 1280 |
|
if 'minimal' in variant: |
|
act_layer = resolve_act_layer(kwargs, 'relu') |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_e1_c16'], |
|
|
|
['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'], |
|
|
|
['ir_r3_k3_s2_e3_c40'], |
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], |
|
|
|
['ir_r2_k3_s1_e6_c112'], |
|
|
|
['ir_r3_k3_s2_e6_c160'], |
|
|
|
['cn_r1_k1_s1_c960'], |
|
] |
|
else: |
|
act_layer = resolve_act_layer(kwargs, 'hard_swish') |
|
arch_def = [ |
|
|
|
['ds_r1_k3_s1_e1_c16_nre'], |
|
|
|
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], |
|
|
|
['ir_r3_k5_s2_e3_c40_se0.25_nre'], |
|
|
|
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], |
|
|
|
['ir_r2_k3_s1_e6_c112_se0.25'], |
|
|
|
['ir_r3_k5_s2_e6_c160_se0.25'], |
|
|
|
['cn_r1_k1_s1_c960'], |
|
] |
|
se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels) |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
num_features=num_features, |
|
stem_size=16, |
|
fix_stem=channel_multiplier < 0.75, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=act_layer, |
|
se_layer=se_layer, |
|
**kwargs, |
|
) |
|
model = _create_mnv3(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_fbnetv3(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
""" FBNetV3 |
|
Paper: `FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining` |
|
- https://arxiv.org/abs/2006.02049 |
|
FIXME untested, this is a preliminary impl of some FBNet-V3 variants. |
|
""" |
|
vl = variant.split('_')[-1] |
|
if vl in ('a', 'b'): |
|
stem_size = 16 |
|
arch_def = [ |
|
['ds_r2_k3_s1_e1_c16'], |
|
['ir_r1_k5_s2_e4_c24', 'ir_r3_k5_s1_e2_c24'], |
|
['ir_r1_k5_s2_e5_c40_se0.25', 'ir_r4_k5_s1_e3_c40_se0.25'], |
|
['ir_r1_k5_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], |
|
['ir_r1_k3_s1_e5_c120_se0.25', 'ir_r5_k5_s1_e3_c120_se0.25'], |
|
['ir_r1_k3_s2_e6_c184_se0.25', 'ir_r5_k5_s1_e4_c184_se0.25', 'ir_r1_k5_s1_e6_c224_se0.25'], |
|
['cn_r1_k1_s1_c1344'], |
|
] |
|
elif vl == 'd': |
|
stem_size = 24 |
|
arch_def = [ |
|
['ds_r2_k3_s1_e1_c16'], |
|
['ir_r1_k3_s2_e5_c24', 'ir_r5_k3_s1_e2_c24'], |
|
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r4_k3_s1_e3_c40_se0.25'], |
|
['ir_r1_k3_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], |
|
['ir_r1_k3_s1_e5_c128_se0.25', 'ir_r6_k5_s1_e3_c128_se0.25'], |
|
['ir_r1_k3_s2_e6_c208_se0.25', 'ir_r5_k5_s1_e5_c208_se0.25', 'ir_r1_k5_s1_e6_c240_se0.25'], |
|
['cn_r1_k1_s1_c1440'], |
|
] |
|
elif vl == 'g': |
|
stem_size = 32 |
|
arch_def = [ |
|
['ds_r3_k3_s1_e1_c24'], |
|
['ir_r1_k5_s2_e4_c40', 'ir_r4_k5_s1_e2_c40'], |
|
['ir_r1_k5_s2_e4_c56_se0.25', 'ir_r4_k5_s1_e3_c56_se0.25'], |
|
['ir_r1_k5_s2_e5_c104', 'ir_r4_k3_s1_e3_c104'], |
|
['ir_r1_k3_s1_e5_c160_se0.25', 'ir_r8_k5_s1_e3_c160_se0.25'], |
|
['ir_r1_k3_s2_e6_c264_se0.25', 'ir_r6_k5_s1_e5_c264_se0.25', 'ir_r2_k5_s1_e6_c288_se0.25'], |
|
['cn_r1_k1_s1_c1728'], |
|
] |
|
else: |
|
raise NotImplemented |
|
round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.95) |
|
se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=round_chs_fn) |
|
act_layer = resolve_act_layer(kwargs, 'hard_swish') |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
num_features=1984, |
|
head_bias=False, |
|
stem_size=stem_size, |
|
round_chs_fn=round_chs_fn, |
|
se_from_exp=False, |
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=act_layer, |
|
se_layer=se_layer, |
|
**kwargs, |
|
) |
|
model = _create_mnv3(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_lcnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
""" LCNet |
|
Essentially a MobileNet-V3 crossed with a MobileNet-V1 |
|
|
|
Paper: `PP-LCNet: A Lightweight CPU Convolutional Neural Network` - https://arxiv.org/abs/2109.15099 |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
arch_def = [ |
|
|
|
['dsa_r1_k3_s1_c32'], |
|
|
|
['dsa_r2_k3_s2_c64'], |
|
|
|
['dsa_r2_k3_s2_c128'], |
|
|
|
['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'], |
|
|
|
['dsa_r4_k5_s1_c256'], |
|
|
|
['dsa_r2_k5_s2_c512_se0.25'], |
|
|
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
stem_size=16, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'hard_swish'), |
|
se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU), |
|
num_features=1280, |
|
**kwargs, |
|
) |
|
model = _create_mnv3(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _gen_lcnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): |
|
""" LCNet |
|
Essentially a MobileNet-V3 crossed with a MobileNet-V1 |
|
|
|
Paper: `PP-LCNet: A Lightweight CPU Convolutional Neural Network` - https://arxiv.org/abs/2109.15099 |
|
|
|
Args: |
|
channel_multiplier: multiplier to number of channels per layer. |
|
""" |
|
arch_def = [ |
|
|
|
['dsa_r1_k3_s1_c32'], |
|
|
|
['dsa_r2_k3_s2_c64'], |
|
|
|
['dsa_r2_k3_s2_c128'], |
|
|
|
['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'], |
|
|
|
['dsa_r4_k5_s1_c256'], |
|
|
|
['dsa_r2_k5_s2_c512_se0.25'], |
|
|
|
] |
|
model_kwargs = dict( |
|
block_args=decode_arch_def(arch_def), |
|
stem_size=16, |
|
round_chs_fn=partial(round_channels, multiplier=channel_multiplier), |
|
norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), |
|
act_layer=resolve_act_layer(kwargs, 'hard_swish'), |
|
se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU), |
|
num_features=1280, |
|
**kwargs, |
|
) |
|
model = _create_mnv3(variant, pretrained, **model_kwargs) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bilinear', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'conv_stem', 'classifier': 'classifier', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'mobilenetv3_large_075.untrained': _cfg(url=''), |
|
'mobilenetv3_large_100.ra_in1k': _cfg( |
|
interpolation='bicubic', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth', |
|
hf_hub_id='timm/'), |
|
'mobilenetv3_large_100.miil_in21k_ft_in1k': _cfg( |
|
interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.), |
|
origin_url='https://github.com/Alibaba-MIIL/ImageNet21K', |
|
paper_ids='arXiv:2104.10972v4', |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_1k_miil_78_0-66471c13.pth', |
|
hf_hub_id='timm/'), |
|
'mobilenetv3_large_100.miil_in21k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_in21k_miil-d71cc17b.pth', |
|
hf_hub_id='timm/', |
|
origin_url='https://github.com/Alibaba-MIIL/ImageNet21K', |
|
paper_ids='arXiv:2104.10972v4', |
|
interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.), num_classes=11221), |
|
|
|
'mobilenetv3_small_050.lamb_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_050_lambc-4b7bbe87.pth', |
|
hf_hub_id='timm/', |
|
interpolation='bicubic'), |
|
'mobilenetv3_small_075.lamb_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_075_lambc-384766db.pth', |
|
hf_hub_id='timm/', |
|
interpolation='bicubic'), |
|
'mobilenetv3_small_100.lamb_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_100_lamb-266a294c.pth', |
|
hf_hub_id='timm/', |
|
interpolation='bicubic'), |
|
|
|
'mobilenetv3_rw.rmsp_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', |
|
interpolation='bicubic'), |
|
|
|
'tf_mobilenetv3_large_075.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
'tf_mobilenetv3_large_100.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
'tf_mobilenetv3_large_minimal_100.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
'tf_mobilenetv3_small_075.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
'tf_mobilenetv3_small_100.in1k': _cfg( |
|
url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
'tf_mobilenetv3_small_minimal_100.in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', |
|
hf_hub_id='timm/', |
|
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), |
|
|
|
'fbnetv3_b.ra2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_b_224-ead5d2a1.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 256, 256), crop_pct=0.95), |
|
'fbnetv3_d.ra2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_d_224-c98bce42.pth', |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 256, 256), crop_pct=0.95), |
|
'fbnetv3_g.ra2_in1k': _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_g_240-0b1df83b.pth', |
|
hf_hub_id='timm/', |
|
input_size=(3, 240, 240), test_input_size=(3, 288, 288), crop_pct=0.95, pool_size=(8, 8)), |
|
|
|
"lcnet_035.untrained": _cfg(), |
|
"lcnet_050.ra2_in1k": _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_050-f447553b.pth', |
|
hf_hub_id='timm/', |
|
interpolation='bicubic', |
|
), |
|
"lcnet_075.ra2_in1k": _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_075-318cad2c.pth', |
|
hf_hub_id='timm/', |
|
interpolation='bicubic', |
|
), |
|
"lcnet_100.ra2_in1k": _cfg( |
|
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_100-a929038c.pth', |
|
hf_hub_id='timm/', |
|
interpolation='bicubic', |
|
), |
|
"lcnet_150.untrained": _cfg(), |
|
}) |
|
|
|
|
|
@register_model |
|
def mobilenetv3_large_075(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv3_large_100(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv3_small_050(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
model = _gen_mobilenet_v3('mobilenetv3_small_050', 0.50, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv3_small_075(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv3_small_100(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def mobilenetv3_rw(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
if pretrained: |
|
|
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_mobilenetv3_large_075(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_mobilenetv3_large_100(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_mobilenetv3_small_075(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_mobilenetv3_small_100(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" MobileNet V3 """ |
|
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT |
|
kwargs['pad_type'] = 'same' |
|
model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def fbnetv3_b(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" FBNetV3-B """ |
|
model = _gen_fbnetv3('fbnetv3_b', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def fbnetv3_d(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" FBNetV3-D """ |
|
model = _gen_fbnetv3('fbnetv3_d', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def fbnetv3_g(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" FBNetV3-G """ |
|
model = _gen_fbnetv3('fbnetv3_g', pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def lcnet_035(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" PP-LCNet 0.35""" |
|
model = _gen_lcnet('lcnet_035', 0.35, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def lcnet_050(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" PP-LCNet 0.5""" |
|
model = _gen_lcnet('lcnet_050', 0.5, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def lcnet_075(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" PP-LCNet 1.0""" |
|
model = _gen_lcnet('lcnet_075', 0.75, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def lcnet_100(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" PP-LCNet 1.0""" |
|
model = _gen_lcnet('lcnet_100', 1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def lcnet_150(pretrained=False, **kwargs) -> MobileNetV3: |
|
""" PP-LCNet 1.5""" |
|
model = _gen_lcnet('lcnet_150', 1.5, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
register_model_deprecations(__name__, { |
|
'mobilenetv3_large_100_miil': 'mobilenetv3_large_100.miil_in21k_ft_in1k', |
|
'mobilenetv3_large_100_miil_in21k': 'mobilenetv3_large_100.miil_in21k', |
|
}) |
|
|