cs-mixer / timm /models /lipscswin.py
crrrr30's picture
Upload folder using huggingface_hub
da716ed
raw
history blame
17.9 kB
# ------------------------------------------
# CSWin Transformer
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# written By Xiaoyi Dong
# ------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from einops.layers.torch import Rearrange
import torch.utils.checkpoint as checkpoint
import numpy as np
import time
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'cswin_224': _cfg(),
'cswin_384': _cfg(
crop_pct=1.0
),
}
class ScaleLayer(nn.Module):
def __init__(self, alpha=0.2, learnable=True, dim=1):
super().__init__()
self.alpha = alpha
self.learnable = learnable
self.dim = dim
if self.learnable:
#self.scale = nn.Parameter((torch.fmod(torch.arange(1, dim+1), 2, out=None)-torch.fmod(torch.arange(0, dim), 2, out=None))*init_t)
self.scale = nn.Parameter(torch.ones(dim) * self.alpha)
else:
self.scale = self.alpha
def forward(self, x):
if self.learnable:
y = self.scale[None, None, :]*x
else:
y = self.scale*x
return y
def __repr__(self):
return f"ScaleLayer(alpha={self.alpha}, learnable={self.learnable}, dim={self.dim})"
class CenterNorm(nn.Module):
r""" CenterNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.scale = normalized_shape/(normalized_shape-1.0)
def forward(self, x):
u = x.mean(-1, keepdim=True)
x = self.scale*(x - u)
x = self.weight[None, None, :] * x + self.bias[None, None, :]
return x
def __repr__(self):
return "CenterNorm()"
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class LePEAttention(nn.Module):
def __init__(self, dim, resolution, idx, split_size=7, dim_out=None, num_heads=8, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.dim_out = dim_out or dim
self.resolution = resolution
self.split_size = split_size
self.num_heads = num_heads
if idx == -1:
H_sp, W_sp = self.resolution, self.resolution
elif idx == 0:
H_sp, W_sp = self.resolution, self.split_size
elif idx == 1:
W_sp, H_sp = self.resolution, self.split_size
else:
print ("ERROR MODE", idx)
exit(0)
self.H_sp = H_sp
self.W_sp = W_sp
self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim)
self.attn_drop = nn.Dropout(attn_drop)
def im2cswin(self, x):
B, N, C = x.shape
H = W = int(np.sqrt(N))
x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
x = img2windows(x, self.H_sp, self.W_sp)
x = x.reshape(-1, self.H_sp* self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous()
return x
def get_lepe(self, x, func):
B, N, C = x.shape
H = W = int(np.sqrt(N))
x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
H_sp, W_sp = self.H_sp, self.W_sp
x = x.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
x = x.permute(0, 2, 4, 1, 3, 5).contiguous().reshape(-1, C, H_sp, W_sp) ### B', C, H', W'
lepe = func(x) ### B', C, H', W'
lepe = lepe.reshape(-1, self.num_heads, C // self.num_heads, H_sp * W_sp).permute(0, 1, 3, 2).contiguous()
x = x.reshape(-1, self.num_heads, C // self.num_heads, self.H_sp* self.W_sp).permute(0, 1, 3, 2).contiguous()
return x, lepe
def forward(self, qkv):
"""
x: B L C
"""
q,k,v = qkv[0], qkv[1], qkv[2]
### Img2Window
H = W = self.resolution
B, L, C = q.shape
assert L == H * W, "flatten img_tokens has wrong size"
q = self.im2cswin(q)
k = self.im2cswin(k)
v, lepe = self.get_lepe(v, self.get_v)
# LipsFormer
q = F.normalize(q, p=2.0, dim=-1)
k = F.normalize(k, p=2.0, dim=-1)
# `10.0 *` from LipsFormer
attn = 10.0 * (q @ k.transpose(-2, -1)) # B head N C @ B head C N --> B head N N
# attn = checkpoint.checkpoint(partial(nn.functional.softmax, dim=-1, dtype=attn.dtype), attn)
attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
attn = self.attn_drop(attn)
x = (attn @ v) + lepe
x = x.transpose(1, 2).reshape(-1, self.H_sp* self.W_sp, C) # B head N N @ B head N C
### Window2Img
x = windows2img(x, self.H_sp, self.W_sp, H, W).view(B, -1, C) # B H' W' C
return x
class CSWinBlock(nn.Module):
def __init__(self, dim, reso, num_heads,
split_size=7, mlp_ratio=4., qkv_bias=False,
drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=CenterNorm,
num_layers=12, last_stage=False):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.patches_resolution = reso
self.split_size = split_size
self.mlp_ratio = mlp_ratio
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm1 = norm_layer(dim)
if self.patches_resolution == split_size:
last_stage = True
if last_stage:
self.branch_num = 1
else:
self.branch_num = 2
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(drop)
if last_stage:
self.attns = nn.ModuleList([
LePEAttention(
dim, resolution=self.patches_resolution, idx = -1,
split_size=split_size, num_heads=num_heads, dim_out=dim,
attn_drop=attn_drop, proj_drop=drop)
for i in range(self.branch_num)])
else:
self.attns = nn.ModuleList([
LePEAttention(
dim//2, resolution=self.patches_resolution, idx = i,
split_size=split_size, num_heads=num_heads//2, dim_out=dim//2,
attn_drop=attn_drop, proj_drop=drop)
for i in range(self.branch_num)])
mlp_hidden_dim = int(dim * mlp_ratio)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop)
self.norm2 = norm_layer(dim)
self.alpha1 = ScaleLayer(dim=dim, alpha=1.0/num_layers) #**alpha_cfg)
self.alpha2 = ScaleLayer(dim=dim, alpha=1.0/num_layers) #**alpha_cfg)
def forward(self, x):
"""
x: B, H*W, C
"""
H = W = self.patches_resolution
B, L, C = x.shape
assert L == H * W, "flatten img_tokens has wrong size"
img = self.norm1(x)
qkv = self.qkv(img).reshape(B, -1, 3, C).permute(2, 0, 1, 3)
if self.branch_num == 2:
x1 = self.attns[0](qkv[:,:,:,:C//2])
x2 = self.attns[1](qkv[:,:,:,C//2:])
attened_x = torch.cat([x1,x2], dim=2)
else:
attened_x = self.attns[0](qkv)
attened_x = self.proj(attened_x)
x = x + self.drop_path(self.alpha1(attened_x))
x = x + self.drop_path(self.alpha2(self.mlp(self.norm2(x))))
return x
def img2windows(img, H_sp, W_sp):
"""
img: B C H W
"""
B, C, H, W = img.shape
img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp* W_sp, C)
return img_perm
def windows2img(img_splits_hw, H_sp, W_sp, H, W):
"""
img_splits_hw: B' H W C
"""
B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))
img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return img
class Merge_Block(nn.Module):
def __init__(self, dim, dim_out, norm_layer=CenterNorm):
super().__init__()
self.conv = nn.Conv2d(dim, dim_out, 3, 2, 1)
self.norm = norm_layer(dim_out)
def forward(self, x):
B, new_HW, C = x.shape
H = W = int(np.sqrt(new_HW))
x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
x = self.conv(x)
B, C = x.shape[:2]
x = x.view(B, C, -1).transpose(-2, -1).contiguous()
x = self.norm(x)
return x
class CSWinTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=96, depth=[2,2,6,2], split_size = [3,5,7],
num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0.,
drop_path=0., hybrid_backbone=None, norm_layer=CenterNorm, use_chk=False):
super().__init__()
self.use_chk = use_chk
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
heads=num_heads
self.stage1_conv_embed = nn.Sequential(
nn.Conv2d(in_chans, embed_dim, 7, 4, 2),
Rearrange('b c h w -> b (h w) c', h = img_size//4, w = img_size//4),
nn.LayerNorm(embed_dim)
)
curr_dim = embed_dim
dpr = [x.item() for x in torch.linspace(0, drop_path, np.sum(depth))] # stochastic depth decay rule
self.stage1 = nn.ModuleList([
CSWinBlock(
dim=curr_dim, num_heads=heads[0], reso=img_size//4, mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, split_size=split_size[0],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[i], norm_layer=norm_layer, num_layers=depth[0])
for i in range(depth[0])])
self.merge1 = Merge_Block(curr_dim, curr_dim*2)
curr_dim = curr_dim*2
self.stage2 = nn.ModuleList(
[CSWinBlock(
dim=curr_dim, num_heads=heads[1], reso=img_size//8, mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, split_size=split_size[1],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[np.sum(depth[:1])+i], norm_layer=norm_layer, num_layers=depth[1])
for i in range(depth[1])])
self.merge2 = Merge_Block(curr_dim, curr_dim*2)
curr_dim = curr_dim*2
temp_stage3 = []
temp_stage3.extend(
[CSWinBlock(
dim=curr_dim, num_heads=heads[2], reso=img_size//16, mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, split_size=split_size[2],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[np.sum(depth[:2])+i], norm_layer=norm_layer, num_layers=depth[2])
for i in range(depth[2])])
self.stage3 = nn.ModuleList(temp_stage3)
self.merge3 = Merge_Block(curr_dim, curr_dim*2)
curr_dim = curr_dim*2
self.stage4 = nn.ModuleList(
[CSWinBlock(
dim=curr_dim, num_heads=heads[3], reso=img_size//32, mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, split_size=split_size[-1],
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[np.sum(depth[:-1])+i], norm_layer=norm_layer, last_stage=True, num_layers=depth[-1])
for i in range(depth[-1])])
self.norm = norm_layer(curr_dim)
# Classifier head
self.head = nn.Linear(curr_dim, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.head.weight, std=0.02)
self.apply(self._spectral_init)
def _spectral_init(self, m):
if isinstance(m, nn.Linear):
# torch.nn.init.orthogonal_(m.weight, gain=1)
torch.nn.init.xavier_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
u, s, v = torch.svd(m.weight)
m.weight.data = m.weight.data / s[0]
elif isinstance(m, (nn.Conv2d)):
# torch.nn.init.orthogonal_(m.weight, gain=1)
torch.nn.init.xavier_normal_(m.weight)
weight = torch.reshape(m.weight.data, (m.weight.data.shape[0], -1))
u, s, v = torch.svd(weight)
m.weight.data = m.weight.data / s[0]
elif isinstance(m, (nn.LayerNorm, CenterNorm, nn.BatchNorm2d)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
if self.num_classes != num_classes:
print ('reset head to', num_classes)
self.num_classes = num_classes
self.head = nn.Linear(self.out_dim, num_classes) if num_classes > 0 else nn.Identity()
self.head = self.head.cuda()
trunc_normal_(self.head.weight, std=.02)
if self.head.bias is not None:
nn.init.constant_(self.head.bias, 0)
def forward_features(self, x):
B = x.shape[0]
x = self.stage1_conv_embed(x)
for blk in self.stage1:
if self.use_chk:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
for pre, blocks in zip([self.merge1, self.merge2, self.merge3],
[self.stage2, self.stage3, self.stage4]):
x = pre(x)
for blk in blocks:
if self.use_chk:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
x = self.norm(x)
return torch.mean(x, dim=1)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
### 224 models
@register_model
def CSWin_64_12211_tiny_224(pretrained=False, **kwargs):
model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[1,2,21,1],
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswin_224']
return model
@register_model
def CSWin_64_24322_small_224(pretrained=False, **kwargs):
model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[2,4,32,2],
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswin_224']
return model
@register_model
def CSWin_96_24322_base_224(pretrained=False, **kwargs):
model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[2,4,32,2],
split_size=[1,2,7,7], num_heads=[4,8,16,32], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswin_224']
return model
@register_model
def CSWin_144_24322_large_224(pretrained=False, **kwargs):
model = CSWinTransformer(patch_size=4, embed_dim=144, depth=[2,4,32,2],
split_size=[1,2,7,7], num_heads=[6,12,24,24], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswin_224']
return model
### 384 models
@register_model
def CSWin_96_24322_base_384(pretrained=False, **kwargs):
model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[2,4,32,2],
split_size=[1,2,12,12], num_heads=[4,8,16,32], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswin_384']
return model
@register_model
def CSWin_144_24322_large_384(pretrained=False, **kwargs):
model = CSWinTransformer(patch_size=4, embed_dim=144, depth=[2,4,32,2],
split_size=[1,2,12,12], num_heads=[6,12,24,24], mlp_ratio=4.)
model.default_cfg = default_cfgs['cswin_384']
return model