|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.models.helpers import load_pretrained |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from timm.models.registry import register_model |
|
from einops.layers.torch import Rearrange |
|
import torch.utils.checkpoint as checkpoint |
|
import numpy as np |
|
import time |
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = { |
|
'cswin_224': _cfg(), |
|
'cswin_384': _cfg( |
|
crop_pct=1.0 |
|
), |
|
} |
|
|
|
|
|
class ScaleLayer(nn.Module): |
|
def __init__(self, alpha=0.2, learnable=True, dim=1): |
|
super().__init__() |
|
self.alpha = alpha |
|
self.learnable = learnable |
|
self.dim = dim |
|
if self.learnable: |
|
|
|
self.scale = nn.Parameter(torch.ones(dim) * self.alpha) |
|
else: |
|
self.scale = self.alpha |
|
|
|
def forward(self, x): |
|
if self.learnable: |
|
y = self.scale[None, None, :]*x |
|
else: |
|
y = self.scale*x |
|
return y |
|
|
|
def __repr__(self): |
|
return f"ScaleLayer(alpha={self.alpha}, learnable={self.learnable}, dim={self.dim})" |
|
|
|
|
|
class CenterNorm(nn.Module): |
|
r""" CenterNorm that supports two data formats: channels_last (default) or channels_first. |
|
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with |
|
shape (batch_size, height, width, channels) while channels_first corresponds to inputs |
|
with shape (batch_size, channels, height, width). |
|
""" |
|
def __init__(self, normalized_shape, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.scale = normalized_shape/(normalized_shape-1.0) |
|
def forward(self, x): |
|
u = x.mean(-1, keepdim=True) |
|
x = self.scale*(x - u) |
|
x = self.weight[None, None, :] * x + self.bias[None, None, :] |
|
return x |
|
|
|
def __repr__(self): |
|
return "CenterNorm()" |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
class LePEAttention(nn.Module): |
|
def __init__(self, dim, resolution, idx, split_size=7, dim_out=None, num_heads=8, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.dim = dim |
|
self.dim_out = dim_out or dim |
|
self.resolution = resolution |
|
self.split_size = split_size |
|
self.num_heads = num_heads |
|
if idx == -1: |
|
H_sp, W_sp = self.resolution, self.resolution |
|
elif idx == 0: |
|
H_sp, W_sp = self.resolution, self.split_size |
|
elif idx == 1: |
|
W_sp, H_sp = self.resolution, self.split_size |
|
else: |
|
print ("ERROR MODE", idx) |
|
exit(0) |
|
self.H_sp = H_sp |
|
self.W_sp = W_sp |
|
self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1,groups=dim) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
|
def im2cswin(self, x): |
|
B, N, C = x.shape |
|
H = W = int(np.sqrt(N)) |
|
x = x.transpose(-2,-1).contiguous().view(B, C, H, W) |
|
x = img2windows(x, self.H_sp, self.W_sp) |
|
x = x.reshape(-1, self.H_sp* self.W_sp, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3).contiguous() |
|
return x |
|
|
|
def get_lepe(self, x, func): |
|
B, N, C = x.shape |
|
H = W = int(np.sqrt(N)) |
|
x = x.transpose(-2,-1).contiguous().view(B, C, H, W) |
|
|
|
H_sp, W_sp = self.H_sp, self.W_sp |
|
x = x.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp) |
|
x = x.permute(0, 2, 4, 1, 3, 5).contiguous().reshape(-1, C, H_sp, W_sp) |
|
|
|
lepe = func(x) |
|
lepe = lepe.reshape(-1, self.num_heads, C // self.num_heads, H_sp * W_sp).permute(0, 1, 3, 2).contiguous() |
|
|
|
x = x.reshape(-1, self.num_heads, C // self.num_heads, self.H_sp* self.W_sp).permute(0, 1, 3, 2).contiguous() |
|
return x, lepe |
|
|
|
def forward(self, qkv): |
|
""" |
|
x: B L C |
|
""" |
|
q,k,v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
H = W = self.resolution |
|
B, L, C = q.shape |
|
assert L == H * W, "flatten img_tokens has wrong size" |
|
|
|
q = self.im2cswin(q) |
|
k = self.im2cswin(k) |
|
v, lepe = self.get_lepe(v, self.get_v) |
|
|
|
|
|
|
|
q = F.normalize(q, p=2.0, dim=-1) |
|
k = F.normalize(k, p=2.0, dim=-1) |
|
|
|
|
|
attn = 10.0 * (q @ k.transpose(-2, -1)) |
|
|
|
attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v) + lepe |
|
x = x.transpose(1, 2).reshape(-1, self.H_sp* self.W_sp, C) |
|
|
|
|
|
x = windows2img(x, self.H_sp, self.W_sp, H, W).view(B, -1, C) |
|
|
|
return x |
|
|
|
|
|
class CSWinBlock(nn.Module): |
|
|
|
def __init__(self, dim, reso, num_heads, |
|
split_size=7, mlp_ratio=4., qkv_bias=False, |
|
drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=CenterNorm, |
|
num_layers=12, last_stage=False): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.patches_resolution = reso |
|
self.split_size = split_size |
|
self.mlp_ratio = mlp_ratio |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.norm1 = norm_layer(dim) |
|
|
|
if self.patches_resolution == split_size: |
|
last_stage = True |
|
if last_stage: |
|
self.branch_num = 1 |
|
else: |
|
self.branch_num = 2 |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(drop) |
|
|
|
if last_stage: |
|
self.attns = nn.ModuleList([ |
|
LePEAttention( |
|
dim, resolution=self.patches_resolution, idx = -1, |
|
split_size=split_size, num_heads=num_heads, dim_out=dim, |
|
attn_drop=attn_drop, proj_drop=drop) |
|
for i in range(self.branch_num)]) |
|
else: |
|
self.attns = nn.ModuleList([ |
|
LePEAttention( |
|
dim//2, resolution=self.patches_resolution, idx = i, |
|
split_size=split_size, num_heads=num_heads//2, dim_out=dim//2, |
|
attn_drop=attn_drop, proj_drop=drop) |
|
for i in range(self.branch_num)]) |
|
|
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer, drop=drop) |
|
self.norm2 = norm_layer(dim) |
|
self.alpha1 = ScaleLayer(dim=dim, alpha=1.0/num_layers) |
|
self.alpha2 = ScaleLayer(dim=dim, alpha=1.0/num_layers) |
|
|
|
def forward(self, x): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
|
|
H = W = self.patches_resolution |
|
B, L, C = x.shape |
|
assert L == H * W, "flatten img_tokens has wrong size" |
|
img = self.norm1(x) |
|
qkv = self.qkv(img).reshape(B, -1, 3, C).permute(2, 0, 1, 3) |
|
|
|
if self.branch_num == 2: |
|
x1 = self.attns[0](qkv[:,:,:,:C//2]) |
|
x2 = self.attns[1](qkv[:,:,:,C//2:]) |
|
attened_x = torch.cat([x1,x2], dim=2) |
|
else: |
|
attened_x = self.attns[0](qkv) |
|
attened_x = self.proj(attened_x) |
|
x = x + self.drop_path(self.alpha1(attened_x)) |
|
x = x + self.drop_path(self.alpha2(self.mlp(self.norm2(x)))) |
|
|
|
return x |
|
|
|
def img2windows(img, H_sp, W_sp): |
|
""" |
|
img: B C H W |
|
""" |
|
B, C, H, W = img.shape |
|
img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp) |
|
img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp* W_sp, C) |
|
return img_perm |
|
|
|
def windows2img(img_splits_hw, H_sp, W_sp, H, W): |
|
""" |
|
img_splits_hw: B' H W C |
|
""" |
|
B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp)) |
|
|
|
img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1) |
|
img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return img |
|
|
|
class Merge_Block(nn.Module): |
|
def __init__(self, dim, dim_out, norm_layer=CenterNorm): |
|
super().__init__() |
|
self.conv = nn.Conv2d(dim, dim_out, 3, 2, 1) |
|
self.norm = norm_layer(dim_out) |
|
|
|
def forward(self, x): |
|
B, new_HW, C = x.shape |
|
H = W = int(np.sqrt(new_HW)) |
|
x = x.transpose(-2, -1).contiguous().view(B, C, H, W) |
|
x = self.conv(x) |
|
B, C = x.shape[:2] |
|
x = x.view(B, C, -1).transpose(-2, -1).contiguous() |
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
class CSWinTransformer(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=96, depth=[2,2,6,2], split_size = [3,5,7], |
|
num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., |
|
drop_path=0., hybrid_backbone=None, norm_layer=CenterNorm, use_chk=False): |
|
super().__init__() |
|
self.use_chk = use_chk |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
heads=num_heads |
|
|
|
self.stage1_conv_embed = nn.Sequential( |
|
nn.Conv2d(in_chans, embed_dim, 7, 4, 2), |
|
Rearrange('b c h w -> b (h w) c', h = img_size//4, w = img_size//4), |
|
nn.LayerNorm(embed_dim) |
|
) |
|
|
|
curr_dim = embed_dim |
|
dpr = [x.item() for x in torch.linspace(0, drop_path, np.sum(depth))] |
|
self.stage1 = nn.ModuleList([ |
|
CSWinBlock( |
|
dim=curr_dim, num_heads=heads[0], reso=img_size//4, mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, split_size=split_size[0], |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], norm_layer=norm_layer, num_layers=depth[0]) |
|
for i in range(depth[0])]) |
|
|
|
self.merge1 = Merge_Block(curr_dim, curr_dim*2) |
|
curr_dim = curr_dim*2 |
|
self.stage2 = nn.ModuleList( |
|
[CSWinBlock( |
|
dim=curr_dim, num_heads=heads[1], reso=img_size//8, mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, split_size=split_size[1], |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[np.sum(depth[:1])+i], norm_layer=norm_layer, num_layers=depth[1]) |
|
for i in range(depth[1])]) |
|
|
|
self.merge2 = Merge_Block(curr_dim, curr_dim*2) |
|
curr_dim = curr_dim*2 |
|
temp_stage3 = [] |
|
temp_stage3.extend( |
|
[CSWinBlock( |
|
dim=curr_dim, num_heads=heads[2], reso=img_size//16, mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, split_size=split_size[2], |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[np.sum(depth[:2])+i], norm_layer=norm_layer, num_layers=depth[2]) |
|
for i in range(depth[2])]) |
|
|
|
self.stage3 = nn.ModuleList(temp_stage3) |
|
|
|
self.merge3 = Merge_Block(curr_dim, curr_dim*2) |
|
curr_dim = curr_dim*2 |
|
self.stage4 = nn.ModuleList( |
|
[CSWinBlock( |
|
dim=curr_dim, num_heads=heads[3], reso=img_size//32, mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, split_size=split_size[-1], |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[np.sum(depth[:-1])+i], norm_layer=norm_layer, last_stage=True, num_layers=depth[-1]) |
|
for i in range(depth[-1])]) |
|
|
|
self.norm = norm_layer(curr_dim) |
|
|
|
self.head = nn.Linear(curr_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
trunc_normal_(self.head.weight, std=0.02) |
|
self.apply(self._spectral_init) |
|
|
|
def _spectral_init(self, m): |
|
if isinstance(m, nn.Linear): |
|
|
|
torch.nn.init.xavier_normal_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
u, s, v = torch.svd(m.weight) |
|
m.weight.data = m.weight.data / s[0] |
|
|
|
elif isinstance(m, (nn.Conv2d)): |
|
|
|
torch.nn.init.xavier_normal_(m.weight) |
|
weight = torch.reshape(m.weight.data, (m.weight.data.shape[0], -1)) |
|
u, s, v = torch.svd(weight) |
|
m.weight.data = m.weight.data / s[0] |
|
|
|
elif isinstance(m, (nn.LayerNorm, CenterNorm, nn.BatchNorm2d)): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
if self.num_classes != num_classes: |
|
print ('reset head to', num_classes) |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.out_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
self.head = self.head.cuda() |
|
trunc_normal_(self.head.weight, std=.02) |
|
if self.head.bias is not None: |
|
nn.init.constant_(self.head.bias, 0) |
|
|
|
def forward_features(self, x): |
|
B = x.shape[0] |
|
x = self.stage1_conv_embed(x) |
|
for blk in self.stage1: |
|
if self.use_chk: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
for pre, blocks in zip([self.merge1, self.merge2, self.merge3], |
|
[self.stage2, self.stage3, self.stage4]): |
|
x = pre(x) |
|
for blk in blocks: |
|
if self.use_chk: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x) |
|
x = self.norm(x) |
|
return torch.mean(x, dim=1) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'patch_embed.proj.weight' in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
|
|
@register_model |
|
def CSWin_64_12211_tiny_224(pretrained=False, **kwargs): |
|
model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[1,2,21,1], |
|
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswin_224'] |
|
return model |
|
|
|
@register_model |
|
def CSWin_64_24322_small_224(pretrained=False, **kwargs): |
|
model = CSWinTransformer(patch_size=4, embed_dim=64, depth=[2,4,32,2], |
|
split_size=[1,2,7,7], num_heads=[2,4,8,16], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswin_224'] |
|
return model |
|
|
|
@register_model |
|
def CSWin_96_24322_base_224(pretrained=False, **kwargs): |
|
model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[2,4,32,2], |
|
split_size=[1,2,7,7], num_heads=[4,8,16,32], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswin_224'] |
|
return model |
|
|
|
@register_model |
|
def CSWin_144_24322_large_224(pretrained=False, **kwargs): |
|
model = CSWinTransformer(patch_size=4, embed_dim=144, depth=[2,4,32,2], |
|
split_size=[1,2,7,7], num_heads=[6,12,24,24], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswin_224'] |
|
return model |
|
|
|
|
|
|
|
@register_model |
|
def CSWin_96_24322_base_384(pretrained=False, **kwargs): |
|
model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[2,4,32,2], |
|
split_size=[1,2,12,12], num_heads=[4,8,16,32], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswin_384'] |
|
return model |
|
|
|
@register_model |
|
def CSWin_144_24322_large_384(pretrained=False, **kwargs): |
|
model = CSWinTransformer(patch_size=4, embed_dim=144, depth=[2,4,32,2], |
|
split_size=[1,2,12,12], num_heads=[6,12,24,24], mlp_ratio=4.) |
|
model.default_cfg = default_cfgs['cswin_384'] |
|
return model |
|
|