|
""" Pytorch Inception-Resnet-V2 implementation |
|
Sourced from https://github.com/Cadene/tensorflow-model-zoo.torch (MIT License) which is |
|
based upon Google's Tensorflow implementation and pretrained weights (Apache 2.0 License) |
|
""" |
|
from functools import partial |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD |
|
from timm.layers import create_classifier, ConvNormAct |
|
from ._builder import build_model_with_cfg |
|
from ._manipulate import flatten_modules |
|
from ._registry import register_model, generate_default_cfgs, register_model_deprecations |
|
|
|
__all__ = ['InceptionResnetV2'] |
|
|
|
|
|
class Mixed_5b(nn.Module): |
|
def __init__(self, conv_block=None): |
|
super(Mixed_5b, self).__init__() |
|
conv_block = conv_block or ConvNormAct |
|
|
|
self.branch0 = conv_block(192, 96, kernel_size=1, stride=1) |
|
|
|
self.branch1 = nn.Sequential( |
|
conv_block(192, 48, kernel_size=1, stride=1), |
|
conv_block(48, 64, kernel_size=5, stride=1, padding=2) |
|
) |
|
|
|
self.branch2 = nn.Sequential( |
|
conv_block(192, 64, kernel_size=1, stride=1), |
|
conv_block(64, 96, kernel_size=3, stride=1, padding=1), |
|
conv_block(96, 96, kernel_size=3, stride=1, padding=1) |
|
) |
|
|
|
self.branch3 = nn.Sequential( |
|
nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), |
|
conv_block(192, 64, kernel_size=1, stride=1) |
|
) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
x3 = self.branch3(x) |
|
out = torch.cat((x0, x1, x2, x3), 1) |
|
return out |
|
|
|
|
|
class Block35(nn.Module): |
|
def __init__(self, scale=1.0, conv_block=None): |
|
super(Block35, self).__init__() |
|
self.scale = scale |
|
conv_block = conv_block or ConvNormAct |
|
|
|
self.branch0 = conv_block(320, 32, kernel_size=1, stride=1) |
|
|
|
self.branch1 = nn.Sequential( |
|
conv_block(320, 32, kernel_size=1, stride=1), |
|
conv_block(32, 32, kernel_size=3, stride=1, padding=1) |
|
) |
|
|
|
self.branch2 = nn.Sequential( |
|
conv_block(320, 32, kernel_size=1, stride=1), |
|
conv_block(32, 48, kernel_size=3, stride=1, padding=1), |
|
conv_block(48, 64, kernel_size=3, stride=1, padding=1) |
|
) |
|
|
|
self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1) |
|
self.act = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
out = torch.cat((x0, x1, x2), 1) |
|
out = self.conv2d(out) |
|
out = out * self.scale + x |
|
out = self.act(out) |
|
return out |
|
|
|
|
|
class Mixed_6a(nn.Module): |
|
def __init__(self, conv_block=None): |
|
super(Mixed_6a, self).__init__() |
|
conv_block = conv_block or ConvNormAct |
|
|
|
self.branch0 = conv_block(320, 384, kernel_size=3, stride=2) |
|
|
|
self.branch1 = nn.Sequential( |
|
conv_block(320, 256, kernel_size=1, stride=1), |
|
conv_block(256, 256, kernel_size=3, stride=1, padding=1), |
|
conv_block(256, 384, kernel_size=3, stride=2) |
|
) |
|
|
|
self.branch2 = nn.MaxPool2d(3, stride=2) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
out = torch.cat((x0, x1, x2), 1) |
|
return out |
|
|
|
|
|
class Block17(nn.Module): |
|
def __init__(self, scale=1.0, conv_block=None): |
|
super(Block17, self).__init__() |
|
self.scale = scale |
|
conv_block = conv_block or ConvNormAct |
|
|
|
self.branch0 = conv_block(1088, 192, kernel_size=1, stride=1) |
|
|
|
self.branch1 = nn.Sequential( |
|
conv_block(1088, 128, kernel_size=1, stride=1), |
|
conv_block(128, 160, kernel_size=(1, 7), stride=1, padding=(0, 3)), |
|
conv_block(160, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)) |
|
) |
|
|
|
self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1) |
|
self.act = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
out = torch.cat((x0, x1), 1) |
|
out = self.conv2d(out) |
|
out = out * self.scale + x |
|
out = self.act(out) |
|
return out |
|
|
|
|
|
class Mixed_7a(nn.Module): |
|
def __init__(self, conv_block=None): |
|
super(Mixed_7a, self).__init__() |
|
conv_block = conv_block or ConvNormAct |
|
|
|
self.branch0 = nn.Sequential( |
|
conv_block(1088, 256, kernel_size=1, stride=1), |
|
conv_block(256, 384, kernel_size=3, stride=2) |
|
) |
|
|
|
self.branch1 = nn.Sequential( |
|
conv_block(1088, 256, kernel_size=1, stride=1), |
|
conv_block(256, 288, kernel_size=3, stride=2) |
|
) |
|
|
|
self.branch2 = nn.Sequential( |
|
conv_block(1088, 256, kernel_size=1, stride=1), |
|
conv_block(256, 288, kernel_size=3, stride=1, padding=1), |
|
conv_block(288, 320, kernel_size=3, stride=2) |
|
) |
|
|
|
self.branch3 = nn.MaxPool2d(3, stride=2) |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
x2 = self.branch2(x) |
|
x3 = self.branch3(x) |
|
out = torch.cat((x0, x1, x2, x3), 1) |
|
return out |
|
|
|
|
|
class Block8(nn.Module): |
|
|
|
def __init__(self, scale=1.0, no_relu=False, conv_block=None): |
|
super(Block8, self).__init__() |
|
self.scale = scale |
|
conv_block = conv_block or ConvNormAct |
|
|
|
self.branch0 = conv_block(2080, 192, kernel_size=1, stride=1) |
|
|
|
self.branch1 = nn.Sequential( |
|
conv_block(2080, 192, kernel_size=1, stride=1), |
|
conv_block(192, 224, kernel_size=(1, 3), stride=1, padding=(0, 1)), |
|
conv_block(224, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)) |
|
) |
|
|
|
self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1) |
|
self.relu = None if no_relu else nn.ReLU() |
|
|
|
def forward(self, x): |
|
x0 = self.branch0(x) |
|
x1 = self.branch1(x) |
|
out = torch.cat((x0, x1), 1) |
|
out = self.conv2d(out) |
|
out = out * self.scale + x |
|
if self.relu is not None: |
|
out = self.relu(out) |
|
return out |
|
|
|
|
|
class InceptionResnetV2(nn.Module): |
|
def __init__( |
|
self, |
|
num_classes=1000, |
|
in_chans=3, |
|
drop_rate=0., |
|
output_stride=32, |
|
global_pool='avg', |
|
norm_layer='batchnorm2d', |
|
norm_eps=1e-3, |
|
act_layer='relu', |
|
): |
|
super(InceptionResnetV2, self).__init__() |
|
self.num_classes = num_classes |
|
self.num_features = 1536 |
|
assert output_stride == 32 |
|
conv_block = partial( |
|
ConvNormAct, |
|
padding=0, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
norm_kwargs=dict(eps=norm_eps), |
|
act_kwargs=dict(inplace=True), |
|
) |
|
|
|
self.conv2d_1a = conv_block(in_chans, 32, kernel_size=3, stride=2) |
|
self.conv2d_2a = conv_block(32, 32, kernel_size=3, stride=1) |
|
self.conv2d_2b = conv_block(32, 64, kernel_size=3, stride=1, padding=1) |
|
self.feature_info = [dict(num_chs=64, reduction=2, module='conv2d_2b')] |
|
|
|
self.maxpool_3a = nn.MaxPool2d(3, stride=2) |
|
self.conv2d_3b = conv_block(64, 80, kernel_size=1, stride=1) |
|
self.conv2d_4a = conv_block(80, 192, kernel_size=3, stride=1) |
|
self.feature_info += [dict(num_chs=192, reduction=4, module='conv2d_4a')] |
|
|
|
self.maxpool_5a = nn.MaxPool2d(3, stride=2) |
|
self.mixed_5b = Mixed_5b(conv_block=conv_block) |
|
self.repeat = nn.Sequential(*[Block35(scale=0.17, conv_block=conv_block) for _ in range(10)]) |
|
self.feature_info += [dict(num_chs=320, reduction=8, module='repeat')] |
|
|
|
self.mixed_6a = Mixed_6a(conv_block=conv_block) |
|
self.repeat_1 = nn.Sequential(*[Block17(scale=0.10, conv_block=conv_block) for _ in range(20)]) |
|
self.feature_info += [dict(num_chs=1088, reduction=16, module='repeat_1')] |
|
|
|
self.mixed_7a = Mixed_7a(conv_block=conv_block) |
|
self.repeat_2 = nn.Sequential(*[Block8(scale=0.20, conv_block=conv_block) for _ in range(9)]) |
|
|
|
self.block8 = Block8(no_relu=True, conv_block=conv_block) |
|
self.conv2d_7b = conv_block(2080, self.num_features, kernel_size=1, stride=1) |
|
self.feature_info += [dict(num_chs=self.num_features, reduction=32, module='conv2d_7b')] |
|
|
|
self.global_pool, self.head_drop, self.classif = create_classifier( |
|
self.num_features, self.num_classes, pool_type=global_pool, drop_rate=drop_rate) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
module_map = {k: i for i, (k, _) in enumerate(flatten_modules(self.named_children(), prefix=()))} |
|
module_map.pop(('classif',)) |
|
|
|
def _matcher(name): |
|
if any([name.startswith(n) for n in ('conv2d_1', 'conv2d_2')]): |
|
return 0 |
|
elif any([name.startswith(n) for n in ('conv2d_3', 'conv2d_4')]): |
|
return 1 |
|
elif any([name.startswith(n) for n in ('block8', 'conv2d_7')]): |
|
return len(module_map) + 1 |
|
else: |
|
for k in module_map.keys(): |
|
if k == tuple(name.split('.')[:len(k)]): |
|
return module_map[k] |
|
return float('inf') |
|
return _matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
assert not enable, "checkpointing not supported" |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.classif |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.num_classes = num_classes |
|
self.global_pool, self.classif = create_classifier(self.num_features, self.num_classes, pool_type=global_pool) |
|
|
|
def forward_features(self, x): |
|
x = self.conv2d_1a(x) |
|
x = self.conv2d_2a(x) |
|
x = self.conv2d_2b(x) |
|
x = self.maxpool_3a(x) |
|
x = self.conv2d_3b(x) |
|
x = self.conv2d_4a(x) |
|
x = self.maxpool_5a(x) |
|
x = self.mixed_5b(x) |
|
x = self.repeat(x) |
|
x = self.mixed_6a(x) |
|
x = self.repeat_1(x) |
|
x = self.mixed_7a(x) |
|
x = self.repeat_2(x) |
|
x = self.block8(x) |
|
x = self.conv2d_7b(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
x = self.global_pool(x) |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.classif(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _create_inception_resnet_v2(variant, pretrained=False, **kwargs): |
|
return build_model_with_cfg(InceptionResnetV2, variant, pretrained, **kwargs) |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
|
|
'inception_resnet_v2.tf_in1k': { |
|
'hf_hub_id': 'timm/', |
|
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), |
|
'crop_pct': 0.8975, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, |
|
'first_conv': 'conv2d_1a.conv', 'classifier': 'classif', |
|
}, |
|
|
|
|
|
'inception_resnet_v2.tf_ens_adv_in1k': { |
|
'hf_hub_id': 'timm/', |
|
'num_classes': 1000, 'input_size': (3, 299, 299), 'pool_size': (8, 8), |
|
'crop_pct': 0.8975, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD, |
|
'first_conv': 'conv2d_1a.conv', 'classifier': 'classif', |
|
} |
|
}) |
|
|
|
|
|
@register_model |
|
def inception_resnet_v2(pretrained=False, **kwargs) -> InceptionResnetV2: |
|
return _create_inception_resnet_v2('inception_resnet_v2', pretrained=pretrained, **kwargs) |
|
|
|
|
|
register_model_deprecations(__name__, { |
|
'ens_adv_inception_resnet_v2': 'inception_resnet_v2.tf_ens_adv_in1k', |
|
}) |