File size: 21,797 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
""" Vision Transformer (ViT) in PyTorch

A PyTorch implement of Vision Transformers as described in:

'Exploring Plain Vision Transformer Backbones for Object Detection'
    - https://arxiv.org/abs/2203.16527

'Segment Anything Model (SAM)'
    - https://github.com/facebookresearch/segment-anything/

"""
import logging
from functools import partial
from typing import Callable, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.layers import PatchEmbed, Mlp, DropPath, PatchDropout, LayerNorm2d, ClassifierHead, NormMlpClassifierHead,\
    Format, resample_abs_pos_embed_nhwc
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import generate_default_cfgs, register_model

# model_registry will add each entrypoint fn to this
__all__ = ['VisionTransformerSAM']


_logger = logging.getLogger(__name__)


class Attention(nn.Module):

    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=True,
            qk_norm=False,
            attn_drop=0.,
            proj_drop=0.,
            norm_layer=nn.LayerNorm,
            use_rel_pos: bool = False,
            rel_pos_zero_init: bool = True,
            input_size: Optional[Tuple[int, int]] = None,
    ):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.use_rel_pos = use_rel_pos
        if self.use_rel_pos:
            assert (
                input_size is not None
            ), "Input size must be provided if using relative positional encoding."
            # initialize relative positional embeddings
            self.rel_pos_h = nn.Parameter(torch.zeros(
                2 * input_size[0] - 1, self.head_dim))
            self.rel_pos_w = nn.Parameter(torch.zeros(
                2 * input_size[1] - 1, self.head_dim))

    def forward(self, x):
        B, H, W, _ = x.shape
        qkv = self.qkv(x).reshape(
            B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        # qkv with shape (3, B, nHead, H * W, C)
        q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
        # q, k, v with shape (B * nHead, H * W, C)
        q, k = self.q_norm(q), self.k_norm(k)
        q = q * self.scale
        attn = q @ k.transpose(-2, -1)

        if self.use_rel_pos:
            attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
        x = self.proj(x)

        return x


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x):
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class Block(nn.Module):

    def __init__(
            self,
            dim,
            num_heads,
            mlp_ratio=4.,
            qkv_bias=True,
            qk_norm=False,
            proj_drop=0.,
            attn_drop=0.,
            init_values=None,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
            mlp_layer=Mlp,
            use_rel_pos=False,
            window_size=0,
            input_size=None,
    ):
        super().__init__()
        self.window_size = window_size
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            norm_layer=norm_layer,
            use_rel_pos=use_rel_pos,
            input_size=input_size if window_size == 0 else (window_size, window_size),
        )
        self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = mlp_layer(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.norm1(x)
        # Window partition
        if self.window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, self.window_size)

        x = self.drop_path1(self.ls1(self.attn(x)))
        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, self.window_size, pad_hw, (H, W))

        x = shortcut + x
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))

        return x


def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
    """
    Partition into non-overlapping windows with padding if needed.
    Args:
        x (tensor): input tokens with [B, H, W, C].
        window_size (int): window size.

    Returns:
        windows: windows after partition with [B * num_windows, window_size, window_size, C].
        (Hp, Wp): padded height and width before partition
    """
    B, H, W, C = x.shape

    pad_h = (window_size - H % window_size) % window_size
    pad_w = (window_size - W % window_size) % window_size
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
    Hp, Wp = H + pad_h, W + pad_w

    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows, (Hp, Wp)


def window_unpartition(
    windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
) -> torch.Tensor:
    """
    Window unpartition into original sequences and removing padding.
    Args:
        windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
        window_size (int): window size.
        pad_hw (Tuple): padded height and width (Hp, Wp).
        hw (Tuple): original height and width (H, W) before padding.

    Returns:
        x: unpartitioned sequences with [B, H, W, C].
    """
    Hp, Wp = pad_hw
    H, W = hw
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
    x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)

    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()
    return x


def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
    """
    Get relative positional embeddings according to the relative positions of
        query and key sizes.
    Args:
        q_size (int): size of query q.
        k_size (int): size of key k.
        rel_pos (Tensor): relative position embeddings (L, C).

    Returns:
        Extracted positional embeddings according to relative positions.
    """
    max_rel_dist = int(2 * max(q_size, k_size) - 1)
    # Interpolate rel pos if needed.
    if rel_pos.shape[0] != max_rel_dist:
        # Interpolate rel pos.
        rel_pos_resized = F.interpolate(
            rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
            size=max_rel_dist,
            mode="linear",
        )
        rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
    else:
        rel_pos_resized = rel_pos

    # Scale the coords with short length if shapes for q and k are different.
    q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
    k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
    relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

    return rel_pos_resized[relative_coords.long()]


def add_decomposed_rel_pos(
    attn: torch.Tensor,
    q: torch.Tensor,
    rel_pos_h: torch.Tensor,
    rel_pos_w: torch.Tensor,
    q_size: Tuple[int, int],
    k_size: Tuple[int, int],
) -> torch.Tensor:
    """
    Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
    https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
    Args:
        attn (Tensor): attention map.
        q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
        rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
        rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
        q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
        k_size (Tuple): spatial sequence size of key k with (k_h, k_w).

    Returns:
        attn (Tensor): attention map with added relative positional embeddings.
    """
    q_h, q_w = q_size
    k_h, k_w = k_size
    Rh = get_rel_pos(q_h, k_h, rel_pos_h)
    Rw = get_rel_pos(q_w, k_w, rel_pos_w)

    B, _, dim = q.shape
    r_q = q.reshape(B, q_h, q_w, dim)
    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)

    attn = (
        attn.view(B, q_h, q_w, k_h, k_w) +
        rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
    ).view(B, q_h * q_w, k_h * k_w)

    return attn


class VisionTransformerSAM(nn.Module):
    """ Vision Transformer for Segment-Anything Model(SAM)

    A PyTorch impl of : `Exploring Plain Vision Transformer Backbones for Object Detection` or `Segment Anything Model (SAM)`
        - https://arxiv.org/abs/2010.11929
    """

    def __init__(
            self,
            img_size: int = 1024,
            patch_size: int = 16,
            in_chans: int = 3,
            num_classes: int = 768,
            embed_dim: int = 768,
            depth: int = 12,
            num_heads: int = 12,
            mlp_ratio: float = 4.,
            qkv_bias: bool = True,
            qk_norm: bool = False,
            init_values: Optional[float] = None,
            pre_norm: bool = False,
            drop_rate: float = 0.,
            pos_drop_rate: float = 0.,
            patch_drop_rate: float = 0.,
            proj_drop_rate: float = 0.,
            attn_drop_rate: float = 0.,
            drop_path_rate: float = 0.,
            weight_init: str = '',
            embed_layer: Callable = partial(
                PatchEmbed, output_fmt=Format.NHWC, strict_img_size=False),
            norm_layer: Optional[Callable] = nn.LayerNorm,
            act_layer: Optional[Callable] = nn.GELU,
            block_fn: Callable = Block,
            mlp_layer: Callable = Mlp,
            use_abs_pos: bool = True,
            use_rel_pos: bool = False,
            window_size: int = 14,
            global_attn_indexes: Tuple[int, ...] = (),
            neck_chans: int = 256,
            global_pool: str = 'avg',
            head_hidden_size: Optional[int] = None
    ):
        """
        Args:
            img_size: Input image size.
            patch_size: Patch size.
            in_chans: Number of image input channels.
            num_classes: Mumber of classes for classification head.
            global_pool: Type of global pooling for final sequence (default: 'token').
            embed_dim: Transformer embedding dimension.
            depth: Depth of transformer.
            num_heads: Number of attention heads.
            mlp_ratio: Ratio of mlp hidden dim to embedding dim.
            qkv_bias: Enable bias for qkv projections if True.
            init_values: Layer-scale init values (layer-scale enabled if not None).
            drop_rate: Head dropout rate.
            pos_drop_rate: Position embedding dropout rate.
            attn_drop_rate: Attention dropout rate.
            drop_path_rate: Stochastic depth rate.
            weight_init: Weight initialization scheme.
            embed_layer: Patch embedding layer.
            norm_layer: Normalization layer.
            act_layer: MLP activation layer.
            block_fn: Transformer block layer.
            use_abs_pos: If True, use absolute positional embeddings.
            use_rel_pos: If True, add relative positional embeddings to the attention map.
            window_size: Window size for window attention blocks. If 0, not use window attention.
            global_attn_indexes: Indexes for blocks using global attention. Used when window_size > 0.
            global_pool: Global pooling type.
            head_hidden_size: If set, use NormMlpHead
        """
        super().__init__()
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.num_classes = num_classes
        self.global_pool = global_pool
        # num_features for consistency with other models
        self.num_features = self.embed_dim = embed_dim
        self.grad_checkpointing = False

        self.patch_embed = embed_layer(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            bias=not pre_norm,  # disable bias if pre-norm is used
        )
        grid_size = self.patch_embed.grid_size
        if use_abs_pos:
            # Initialize absolute positional embedding with pretrain image size.
            self.pos_embed = nn.Parameter(torch.zeros(1, grid_size[0], grid_size[1], embed_dim))
        else:
            self.pos_embed = None
        self.pos_drop = nn.Dropout(p=pos_drop_rate)
        if patch_drop_rate > 0:
            self.patch_drop = PatchDropout(
                patch_drop_rate,
                num_prefix_tokens=0,
            )
        else:
            self.patch_drop = nn.Identity()
        self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        self.blocks = nn.Sequential(*[
            block_fn(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_norm=qk_norm,
                init_values=init_values,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                act_layer=act_layer,
                mlp_layer=mlp_layer,
                use_rel_pos=use_rel_pos,
                window_size=window_size if i not in global_attn_indexes else 0,
                input_size=grid_size,
            )
            for i in range(depth)])

        if neck_chans:
            self.neck = nn.Sequential(
                nn.Conv2d(
                    embed_dim,
                    neck_chans,
                    kernel_size=1,
                    bias=False,
                ),
                LayerNorm2d(neck_chans),
                nn.Conv2d(
                    neck_chans,
                    neck_chans,
                    kernel_size=3,
                    padding=1,
                    bias=False,
                ),
                LayerNorm2d(neck_chans),
            )
        else:
            self.neck = nn.Identity()
            neck_chans = embed_dim

        # Classifier Head
        if head_hidden_size:
            self.head = NormMlpClassifierHead(
                neck_chans,
                num_classes,
                hidden_size=head_hidden_size,
                pool_type=global_pool,
                drop_rate=drop_rate,
            )
        else:
            self.head = ClassifierHead(
                neck_chans,
                num_classes,
                pool_type=global_pool,
                drop_rate=drop_rate,
            )

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'dist_token'}

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^pos_embed|patch_embed',  # stem and embed
            blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes=0, global_pool=None):
        self.head.reset(num_classes, global_pool)

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.pos_embed is not None:
            # dynamically resize abs pos embedding if needed
            x = x + resample_abs_pos_embed_nhwc(self.pos_embed, x.shape[1:3])
        x = self.pos_drop(x)
        x = self.patch_drop(x)
        x = self.norm_pre(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        x = self.neck(x.permute(0, 3, 1, 2))
        return x

    def forward_head(self, x, pre_logits: bool = False):
        return self.head(x, pre_logits=True) if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def checkpoint_filter_fn(
        state_dict,
        model,
):
    """ Remap SAM checkpoints -> timm """
    sam_checkpoint = 'image_encoder.patch_embed.proj.weight' in state_dict
    out_dict = {}
    for k, v in state_dict.items():
        if k.startswith('image_encoder.'):
            k = k[14:]
            k = k.replace('mlp.lin', 'mlp.fc')
        else:
            if sam_checkpoint:
                continue
        out_dict[k] = v
    return out_dict


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 1024, 1024), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = generate_default_cfgs({

    # Segment-Anyhing Model (SAM) pretrained - https://github.com/facebookresearch/segment-anything (no classifier head, for fine-tune/features only)
    'samvit_base_patch16.sa1b': _cfg(
        url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth',
        hf_hub_id='timm/',
        license='apache-2.0',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0,
        input_size=(3, 1024, 1024), crop_pct=1.0),
    'samvit_large_patch16.sa1b': _cfg(
        url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth',
        hf_hub_id='timm/',
        license='apache-2.0',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0,
        input_size=(3, 1024, 1024), crop_pct=1.0),
    'samvit_huge_patch16.sa1b': _cfg(
        url='https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth',
        hf_hub_id='timm/',
        license='apache-2.0',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0,
        input_size=(3, 1024, 1024), crop_pct=1.0),
})


def _create_vision_transformer(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError(
            'features_only not implemented for Vision Transformer models.')

    return build_model_with_cfg(
        VisionTransformerSAM,
        variant,
        pretrained,
        pretrained_filter_fn=checkpoint_filter_fn,
        **kwargs,
    )


@register_model
def samvit_base_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM:
    """ ViT-B/16 for Segment-Anything
    """
    model_args = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, global_attn_indexes=[2, 5, 8, 11],
        window_size=14, use_rel_pos=True, img_size=1024,
    )
    model = _create_vision_transformer(
        'samvit_base_patch16', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def samvit_large_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM:
    """ ViT-L/16 for Segment-Anything
    """
    model_args = dict(
        patch_size=16, embed_dim=1024, depth=24, num_heads=16, global_attn_indexes=[5, 11, 17, 23],
        window_size=14, use_rel_pos=True, img_size=1024,
    )
    model = _create_vision_transformer(
        'samvit_large_patch16', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def samvit_huge_patch16(pretrained=False, **kwargs) -> VisionTransformerSAM:
    """ ViT-H/16 for Segment-Anything
    """
    model_args = dict(
        patch_size=16, embed_dim=1280, depth=32, num_heads=16, global_attn_indexes=[7, 15, 23, 31],
        window_size=14, use_rel_pos=True, img_size=1024,
    )
    model = _create_vision_transformer(
        'samvit_huge_patch16', pretrained=pretrained, **dict(model_args, **kwargs))
    return model