File size: 23,853 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
""" Relative Position Vision Transformer (ViT) in PyTorch
NOTE: these models are experimental / WIP, expect changes
Hacked together by / Copyright 2022, Ross Wightman
"""
import logging
import math
from functools import partial
from typing import Optional, Tuple
import torch
import torch.nn as nn
from torch.jit import Final
from torch.utils.checkpoint import checkpoint
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.layers import PatchEmbed, Mlp, DropPath, RelPosMlp, RelPosBias, use_fused_attn
from ._builder import build_model_with_cfg
from ._registry import generate_default_cfgs, register_model
__all__ = ['VisionTransformerRelPos'] # model_registry will add each entrypoint fn to this
_logger = logging.getLogger(__name__)
class RelPosAttention(nn.Module):
fused_attn: Final[bool]
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_norm=False,
rel_pos_cls=None,
attn_drop=0.,
proj_drop=0.,
norm_layer=nn.LayerNorm,
):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.rel_pos = rel_pos_cls(num_heads=num_heads) if rel_pos_cls else None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q = self.q_norm(q)
k = self.k_norm(k)
if self.fused_attn:
if self.rel_pos is not None:
attn_bias = self.rel_pos.get_bias()
elif shared_rel_pos is not None:
attn_bias = shared_rel_pos
else:
attn_bias = None
x = torch.nn.functional.scaled_dot_product_attention(
q, k, v,
attn_mask=attn_bias,
dropout_p=self.attn_drop.p,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if self.rel_pos is not None:
attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos)
elif shared_rel_pos is not None:
attn = attn + shared_rel_pos
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class RelPosBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_norm=False,
rel_pos_cls=None,
init_values=None,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = RelPosAttention(
dim,
num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
rel_pos_cls=rel_pos_cls,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos)))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class ResPostRelPosBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_norm=False,
rel_pos_cls=None,
init_values=None,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.init_values = init_values
self.attn = RelPosAttention(
dim,
num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
rel_pos_cls=rel_pos_cls,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm1 = norm_layer(dim)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)
self.norm2 = norm_layer(dim)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.init_weights()
def init_weights(self):
# NOTE this init overrides that base model init with specific changes for the block type
if self.init_values is not None:
nn.init.constant_(self.norm1.weight, self.init_values)
nn.init.constant_(self.norm2.weight, self.init_values)
def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
x = x + self.drop_path1(self.norm1(self.attn(x, shared_rel_pos=shared_rel_pos)))
x = x + self.drop_path2(self.norm2(self.mlp(x)))
return x
class VisionTransformerRelPos(nn.Module):
""" Vision Transformer w/ Relative Position Bias
Differing from classic vit, this impl
* uses relative position index (swin v1 / beit) or relative log coord + mlp (swin v2) pos embed
* defaults to no class token (can be enabled)
* defaults to global avg pool for head (can be changed)
* layer-scale (residual branch gain) enabled
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
global_pool='avg',
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.,
qkv_bias=True,
qk_norm=False,
init_values=1e-6,
class_token=False,
fc_norm=False,
rel_pos_type='mlp',
rel_pos_dim=None,
shared_rel_pos=False,
drop_rate=0.,
proj_drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
weight_init='skip',
embed_layer=PatchEmbed,
norm_layer=None,
act_layer=None,
block_fn=RelPosBlock
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
global_pool (str): type of global pooling for final sequence (default: 'avg')
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_norm (bool): Enable normalization of query and key in attention
init_values: (float): layer-scale init values
class_token (bool): use class token (default: False)
fc_norm (bool): use pre classifier norm instead of pre-pool
rel_pos_ty pe (str): type of relative position
shared_rel_pos (bool): share relative pos across all blocks
drop_rate (float): dropout rate
proj_drop_rate (float): projection dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
weight_init (str): weight init scheme
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
act_layer: (nn.Module): MLP activation layer
"""
super().__init__()
assert global_pool in ('', 'avg', 'token')
assert class_token or global_pool != 'token'
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_prefix_tokens = 1 if class_token else 0
self.grad_checkpointing = False
self.patch_embed = embed_layer(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
feat_size = self.patch_embed.grid_size
rel_pos_args = dict(window_size=feat_size, prefix_tokens=self.num_prefix_tokens)
if rel_pos_type.startswith('mlp'):
if rel_pos_dim:
rel_pos_args['hidden_dim'] = rel_pos_dim
if 'swin' in rel_pos_type:
rel_pos_args['mode'] = 'swin'
rel_pos_cls = partial(RelPosMlp, **rel_pos_args)
else:
rel_pos_cls = partial(RelPosBias, **rel_pos_args)
self.shared_rel_pos = None
if shared_rel_pos:
self.shared_rel_pos = rel_pos_cls(num_heads=num_heads)
# NOTE shared rel pos currently mutually exclusive w/ per-block, but could support both...
rel_pos_cls = None
self.cls_token = nn.Parameter(torch.zeros(1, self.num_prefix_tokens, embed_dim)) if class_token else None
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
block_fn(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
rel_pos_cls=rel_pos_cls,
init_values=init_values,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
)
for i in range(depth)])
self.norm = norm_layer(embed_dim) if not fc_norm else nn.Identity()
# Classifier Head
self.fc_norm = norm_layer(embed_dim) if fc_norm else nn.Identity()
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if weight_init != 'skip':
self.init_weights(weight_init)
def init_weights(self, mode=''):
assert mode in ('jax', 'moco', '')
if self.cls_token is not None:
nn.init.normal_(self.cls_token, std=1e-6)
# FIXME weight init scheme using PyTorch defaults curently
#named_apply(get_init_weights_vit(mode, head_bias), self)
@torch.jit.ignore
def no_weight_decay(self):
return {'cls_token'}
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^cls_token|patch_embed', # stem and embed
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes: int, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'avg', 'token')
self.global_pool = global_pool
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
x = self.patch_embed(x)
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
shared_rel_pos = self.shared_rel_pos.get_bias() if self.shared_rel_pos is not None else None
for blk in self.blocks:
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(blk, x, shared_rel_pos=shared_rel_pos)
else:
x = blk(x, shared_rel_pos=shared_rel_pos)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
x = self.fc_norm(x)
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _create_vision_transformer_relpos(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model = build_model_with_cfg(VisionTransformerRelPos, variant, pretrained, **kwargs)
return model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
'vit_relpos_base_patch32_plus_rpn_256.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth',
hf_hub_id='timm/',
input_size=(3, 256, 256)),
'vit_relpos_base_patch16_plus_240.untrained': _cfg(url='', input_size=(3, 240, 240)),
'vit_relpos_small_patch16_224.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_small_patch16_224-sw-ec2778b4.pth',
hf_hub_id='timm/'),
'vit_relpos_medium_patch16_224.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_224-sw-11c174af.pth',
hf_hub_id='timm/'),
'vit_relpos_base_patch16_224.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth',
hf_hub_id='timm/'),
'vit_srelpos_small_patch16_224.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_small_patch16_224-sw-6cdb8849.pth',
hf_hub_id='timm/'),
'vit_srelpos_medium_patch16_224.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_medium_patch16_224-sw-ad702b8c.pth',
hf_hub_id='timm/'),
'vit_relpos_medium_patch16_cls_224.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_cls_224-sw-cfe8e259.pth',
hf_hub_id='timm/'),
'vit_relpos_base_patch16_cls_224.untrained': _cfg(),
'vit_relpos_base_patch16_clsgap_224.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth',
hf_hub_id='timm/'),
'vit_relpos_small_patch16_rpn_224.untrained': _cfg(),
'vit_relpos_medium_patch16_rpn_224.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_rpn_224-sw-5d2befd8.pth',
hf_hub_id='timm/'),
'vit_relpos_base_patch16_rpn_224.untrained': _cfg(),
})
@register_model
def vit_relpos_base_patch32_plus_rpn_256(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/32+) w/ relative log-coord position and residual post-norm, no class token
"""
model_args = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, block_fn=ResPostRelPosBlock)
model = _create_vision_transformer_relpos(
'vit_relpos_base_patch32_plus_rpn_256', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_base_patch16_plus_240(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16+) w/ relative log-coord position, no class token
"""
model_args = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14)
model = _create_vision_transformer_relpos(
'vit_relpos_base_patch16_plus_240', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ relative log-coord position, no class token
"""
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=True)
model = _create_vision_transformer_relpos(
'vit_relpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ relative log-coord position, no class token
"""
model_args = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=True)
model = _create_vision_transformer_relpos(
'vit_relpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ relative log-coord position, no class token
"""
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True)
model = _create_vision_transformer_relpos(
'vit_relpos_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_srelpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token
"""
model_args = dict(
patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=False,
rel_pos_dim=384, shared_rel_pos=True)
model = _create_vision_transformer_relpos(
'vit_srelpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_srelpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token
"""
model_args = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False,
rel_pos_dim=512, shared_rel_pos=True)
model = _create_vision_transformer_relpos(
'vit_srelpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_medium_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-M/16) w/ relative log-coord position, class token present
"""
model_args = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False,
rel_pos_dim=256, class_token=True, global_pool='token')
model = _create_vision_transformer_relpos(
'vit_relpos_medium_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
"""
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, class_token=True, global_pool='token')
model = _create_vision_transformer_relpos(
'vit_relpos_base_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_base_patch16_clsgap_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
NOTE this config is a bit of a mistake, class token was enabled but global avg-pool w/ fc-norm was not disabled
Leaving here for comparisons w/ a future re-train as it performs quite well.
"""
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True, class_token=True)
model = _create_vision_transformer_relpos(
'vit_relpos_base_patch16_clsgap_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_small_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token
"""
model_args = dict(
patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, block_fn=ResPostRelPosBlock)
model = _create_vision_transformer_relpos(
'vit_relpos_small_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_medium_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token
"""
model_args = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, block_fn=ResPostRelPosBlock)
model = _create_vision_transformer_relpos(
'vit_relpos_medium_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_relpos_base_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
""" ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token
"""
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, block_fn=ResPostRelPosBlock)
model = _create_vision_transformer_relpos(
'vit_relpos_base_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
|