File size: 23,853 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
""" Relative Position Vision Transformer (ViT) in PyTorch

NOTE: these models are experimental / WIP, expect changes

Hacked together by / Copyright 2022, Ross Wightman
"""
import logging
import math
from functools import partial
from typing import Optional, Tuple

import torch
import torch.nn as nn
from torch.jit import Final
from torch.utils.checkpoint import checkpoint

from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.layers import PatchEmbed, Mlp, DropPath, RelPosMlp, RelPosBias, use_fused_attn
from ._builder import build_model_with_cfg
from ._registry import generate_default_cfgs, register_model

__all__ = ['VisionTransformerRelPos']  # model_registry will add each entrypoint fn to this

_logger = logging.getLogger(__name__)


class RelPosAttention(nn.Module):
    fused_attn: Final[bool]

    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=False,
            qk_norm=False,
            rel_pos_cls=None,
            attn_drop=0.,
            proj_drop=0.,
            norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.rel_pos = rel_pos_cls(num_heads=num_heads) if rel_pos_cls else None
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)
        q = self.q_norm(q)
        k = self.k_norm(k)

        if self.fused_attn:
            if self.rel_pos is not None:
                attn_bias = self.rel_pos.get_bias()
            elif shared_rel_pos is not None:
                attn_bias = shared_rel_pos
            else:
                attn_bias = None

            x = torch.nn.functional.scaled_dot_product_attention(
                q, k, v,
                attn_mask=attn_bias,
                dropout_p=self.attn_drop.p,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            if self.rel_pos is not None:
                attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos)
            elif shared_rel_pos is not None:
                attn = attn + shared_rel_pos
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x):
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class RelPosBlock(nn.Module):

    def __init__(
            self,
            dim,
            num_heads,
            mlp_ratio=4.,
            qkv_bias=False,
            qk_norm=False,
            rel_pos_cls=None,
            init_values=None,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = RelPosAttention(
            dim,
            num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            rel_pos_cls=rel_pos_cls,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )
        self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
        x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos)))
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


class ResPostRelPosBlock(nn.Module):

    def __init__(
            self,
            dim,
            num_heads,
            mlp_ratio=4.,
            qkv_bias=False,
            qk_norm=False,
            rel_pos_cls=None,
            init_values=None,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=nn.LayerNorm,
    ):
        super().__init__()
        self.init_values = init_values

        self.attn = RelPosAttention(
            dim,
            num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            rel_pos_cls=rel_pos_cls,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
        )
        self.norm1 = norm_layer(dim)
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.mlp = Mlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.norm2 = norm_layer(dim)
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.init_weights()

    def init_weights(self):
        # NOTE this init overrides that base model init with specific changes for the block type
        if self.init_values is not None:
            nn.init.constant_(self.norm1.weight, self.init_values)
            nn.init.constant_(self.norm2.weight, self.init_values)

    def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None):
        x = x + self.drop_path1(self.norm1(self.attn(x, shared_rel_pos=shared_rel_pos)))
        x = x + self.drop_path2(self.norm2(self.mlp(x)))
        return x


class VisionTransformerRelPos(nn.Module):
    """ Vision Transformer w/ Relative Position Bias

    Differing from classic vit, this impl
      * uses relative position index (swin v1 / beit) or relative log coord + mlp (swin v2) pos embed
      * defaults to no class token (can be enabled)
      * defaults to global avg pool for head (can be changed)
      * layer-scale (residual branch gain) enabled
    """

    def __init__(
            self,
            img_size=224,
            patch_size=16,
            in_chans=3,
            num_classes=1000,
            global_pool='avg',
            embed_dim=768,
            depth=12,
            num_heads=12,
            mlp_ratio=4.,
            qkv_bias=True,
            qk_norm=False,
            init_values=1e-6,
            class_token=False,
            fc_norm=False,
            rel_pos_type='mlp',
            rel_pos_dim=None,
            shared_rel_pos=False,
            drop_rate=0.,
            proj_drop_rate=0.,
            attn_drop_rate=0.,
            drop_path_rate=0.,
            weight_init='skip',
            embed_layer=PatchEmbed,
            norm_layer=None,
            act_layer=None,
            block_fn=RelPosBlock
    ):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            global_pool (str): type of global pooling for final sequence (default: 'avg')
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_norm (bool): Enable normalization of query and key in attention
            init_values: (float): layer-scale init values
            class_token (bool): use class token (default: False)
            fc_norm (bool): use pre classifier norm instead of pre-pool
            rel_pos_ty pe (str): type of relative position
            shared_rel_pos (bool): share relative pos across all blocks
            drop_rate (float): dropout rate
            proj_drop_rate (float): projection dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            weight_init (str): weight init scheme
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
            act_layer: (nn.Module): MLP activation layer
        """
        super().__init__()
        assert global_pool in ('', 'avg', 'token')
        assert class_token or global_pool != 'token'
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_prefix_tokens = 1 if class_token else 0
        self.grad_checkpointing = False

        self.patch_embed = embed_layer(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )
        feat_size = self.patch_embed.grid_size

        rel_pos_args = dict(window_size=feat_size, prefix_tokens=self.num_prefix_tokens)
        if rel_pos_type.startswith('mlp'):
            if rel_pos_dim:
                rel_pos_args['hidden_dim'] = rel_pos_dim
            if 'swin' in rel_pos_type:
                rel_pos_args['mode'] = 'swin'
            rel_pos_cls = partial(RelPosMlp, **rel_pos_args)
        else:
            rel_pos_cls = partial(RelPosBias, **rel_pos_args)
        self.shared_rel_pos = None
        if shared_rel_pos:
            self.shared_rel_pos = rel_pos_cls(num_heads=num_heads)
            # NOTE shared rel pos currently mutually exclusive w/ per-block, but could support both...
            rel_pos_cls = None

        self.cls_token = nn.Parameter(torch.zeros(1, self.num_prefix_tokens, embed_dim)) if class_token else None

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            block_fn(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_norm=qk_norm,
                rel_pos_cls=rel_pos_cls,
                init_values=init_values,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                act_layer=act_layer,
            )
            for i in range(depth)])
        self.norm = norm_layer(embed_dim) if not fc_norm else nn.Identity()

        # Classifier Head
        self.fc_norm = norm_layer(embed_dim) if fc_norm else nn.Identity()
        self.head_drop = nn.Dropout(drop_rate)
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        if weight_init != 'skip':
            self.init_weights(weight_init)

    def init_weights(self, mode=''):
        assert mode in ('jax', 'moco', '')
        if self.cls_token is not None:
            nn.init.normal_(self.cls_token, std=1e-6)
        # FIXME weight init scheme using PyTorch defaults curently
        #named_apply(get_init_weights_vit(mode, head_bias), self)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'cls_token'}

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^cls_token|patch_embed',  # stem and embed
            blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes: int, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ('', 'avg', 'token')
            self.global_pool = global_pool
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.cls_token is not None:
            x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)

        shared_rel_pos = self.shared_rel_pos.get_bias() if self.shared_rel_pos is not None else None
        for blk in self.blocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(blk, x, shared_rel_pos=shared_rel_pos)
            else:
                x = blk(x, shared_rel_pos=shared_rel_pos)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        x = self.fc_norm(x)
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_vision_transformer_relpos(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    model = build_model_with_cfg(VisionTransformerRelPos, variant, pretrained, **kwargs)
    return model


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'vit_relpos_base_patch32_plus_rpn_256.sw_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_replos_base_patch32_plus_rpn_256-sw-dd486f51.pth',
        hf_hub_id='timm/',
        input_size=(3, 256, 256)),
    'vit_relpos_base_patch16_plus_240.untrained': _cfg(url='', input_size=(3, 240, 240)),

    'vit_relpos_small_patch16_224.sw_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_small_patch16_224-sw-ec2778b4.pth',
        hf_hub_id='timm/'),
    'vit_relpos_medium_patch16_224.sw_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_224-sw-11c174af.pth',
        hf_hub_id='timm/'),
    'vit_relpos_base_patch16_224.sw_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_224-sw-49049aed.pth',
        hf_hub_id='timm/'),

    'vit_srelpos_small_patch16_224.sw_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_small_patch16_224-sw-6cdb8849.pth',
        hf_hub_id='timm/'),
    'vit_srelpos_medium_patch16_224.sw_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_srelpos_medium_patch16_224-sw-ad702b8c.pth',
        hf_hub_id='timm/'),

    'vit_relpos_medium_patch16_cls_224.sw_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_cls_224-sw-cfe8e259.pth',
        hf_hub_id='timm/'),
    'vit_relpos_base_patch16_cls_224.untrained': _cfg(),
    'vit_relpos_base_patch16_clsgap_224.sw_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_base_patch16_gapcls_224-sw-1a341d6c.pth',
        hf_hub_id='timm/'),

    'vit_relpos_small_patch16_rpn_224.untrained': _cfg(),
    'vit_relpos_medium_patch16_rpn_224.sw_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_relpos_medium_patch16_rpn_224-sw-5d2befd8.pth',
        hf_hub_id='timm/'),
    'vit_relpos_base_patch16_rpn_224.untrained': _cfg(),
})


@register_model
def vit_relpos_base_patch32_plus_rpn_256(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/32+) w/ relative log-coord position and residual post-norm, no class token
    """
    model_args = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, block_fn=ResPostRelPosBlock)
    model = _create_vision_transformer_relpos(
        'vit_relpos_base_patch32_plus_rpn_256', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_base_patch16_plus_240(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16+) w/ relative log-coord position, no class token
    """
    model_args = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14)
    model = _create_vision_transformer_relpos(
        'vit_relpos_base_patch16_plus_240', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token
    """
    model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=True)
    model = _create_vision_transformer_relpos(
        'vit_relpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token
    """
    model_args = dict(
        patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=True)
    model = _create_vision_transformer_relpos(
        'vit_relpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ relative log-coord position, no class token
    """
    model_args = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True)
    model = _create_vision_transformer_relpos(
        'vit_relpos_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_srelpos_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token
    """
    model_args = dict(
        patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, fc_norm=False,
        rel_pos_dim=384, shared_rel_pos=True)
    model = _create_vision_transformer_relpos(
        'vit_srelpos_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_srelpos_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ shared relative log-coord position, no class token
    """
    model_args = dict(
        patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False,
        rel_pos_dim=512, shared_rel_pos=True)
    model = _create_vision_transformer_relpos(
        'vit_srelpos_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_medium_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-M/16) w/ relative log-coord position, class token present
    """
    model_args = dict(
        patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, fc_norm=False,
        rel_pos_dim=256, class_token=True, global_pool='token')
    model = _create_vision_transformer_relpos(
        'vit_relpos_medium_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_base_patch16_cls_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
    """
    model_args = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, class_token=True, global_pool='token')
    model = _create_vision_transformer_relpos(
        'vit_relpos_base_patch16_cls_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_base_patch16_clsgap_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ relative log-coord position, class token present
    NOTE this config is a bit of a mistake, class token was enabled but global avg-pool w/ fc-norm was not disabled
    Leaving here for comparisons w/ a future re-train as it performs quite well.
    """
    model_args = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, fc_norm=True, class_token=True)
    model = _create_vision_transformer_relpos(
        'vit_relpos_base_patch16_clsgap_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_small_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token
    """
    model_args = dict(
        patch_size=16, embed_dim=384, depth=12, num_heads=6, qkv_bias=False, block_fn=ResPostRelPosBlock)
    model = _create_vision_transformer_relpos(
        'vit_relpos_small_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_medium_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token
    """
    model_args = dict(
        patch_size=16, embed_dim=512, depth=12, num_heads=8, qkv_bias=False, block_fn=ResPostRelPosBlock)
    model = _create_vision_transformer_relpos(
        'vit_relpos_medium_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_relpos_base_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformerRelPos:
    """ ViT-Base (ViT-B/16) w/ relative log-coord position and residual post-norm, no class token
    """
    model_args = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, block_fn=ResPostRelPosBlock)
    model = _create_vision_transformer_relpos(
        'vit_relpos_base_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model