File size: 16,265 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
""" Hybrid Vision Transformer (ViT) in PyTorch

A PyTorch implement of the Hybrid Vision Transformers as described in:

'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale'
    - https://arxiv.org/abs/2010.11929

`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers`
    - https://arxiv.org/abs/2106.10270

NOTE These hybrid model definitions depend on code in vision_transformer.py.
They were moved here to keep file sizes sane.

Hacked together by / Copyright 2020, Ross Wightman
"""
from functools import partial
from typing import List, Tuple

import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import StdConv2dSame, StdConv2d, to_2tuple
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
from .resnet import resnet26d, resnet50d
from .resnetv2 import ResNetV2, create_resnetv2_stem
from .vision_transformer import _create_vision_transformer, VisionTransformer


class HybridEmbed(nn.Module):
    """ CNN Feature Map Embedding
    Extract feature map from CNN, flatten, project to embedding dim.
    """
    def __init__(
            self,
            backbone,
            img_size=224,
            patch_size=1,
            feature_size=None,
            in_chans=3,
            embed_dim=768,
            bias=True,
    ):
        super().__init__()
        assert isinstance(backbone, nn.Module)
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.backbone = backbone
        if feature_size is None:
            with torch.no_grad():
                # NOTE Most reliable way of determining output dims is to run forward pass
                training = backbone.training
                if training:
                    backbone.eval()
                o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
                if isinstance(o, (list, tuple)):
                    o = o[-1]  # last feature if backbone outputs list/tuple of features
                feature_size = o.shape[-2:]
                feature_dim = o.shape[1]
                backbone.train(training)
        else:
            feature_size = to_2tuple(feature_size)
            if hasattr(self.backbone, 'feature_info'):
                feature_dim = self.backbone.feature_info.channels()[-1]
            else:
                feature_dim = self.backbone.num_features
        assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0
        self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.proj = nn.Conv2d(feature_dim, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)

    def forward(self, x):
        x = self.backbone(x)
        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features
        x = self.proj(x)
        x = x.flatten(2).transpose(1, 2)
        return x


class HybridEmbedWithSize(nn.Module):
    """ CNN Feature Map Embedding
    Extract feature map from CNN, flatten, project to embedding dim.
    """
    def __init__(
            self,
            backbone,
            img_size=224,
            patch_size=1,
            feature_size=None,
            in_chans=3,
            embed_dim=768,
            bias=True,
    ):
        super().__init__(
            backbone=backbone,
            img_size=img_size,
            patch_size=patch_size,
            feature_size=feature_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            bias=bias,
        )

    def forward(self, x) -> Tuple[torch.Tensor, List[int]]:
        x = self.backbone(x)
        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features
        x = self.proj(x)
        return x.flatten(2).transpose(1, 2), x.shape[-2:]


def _create_vision_transformer_hybrid(variant, backbone, pretrained=False, **kwargs):
    embed_layer = partial(HybridEmbed, backbone=backbone)
    kwargs.setdefault('patch_size', 1)  # default patch size for hybrid models if not set
    return _create_vision_transformer(variant, pretrained=pretrained, embed_layer=embed_layer, **kwargs)


def _resnetv2(layers=(3, 4, 9), **kwargs):
    """ ResNet-V2 backbone helper"""
    padding_same = kwargs.get('padding_same', True)
    stem_type = 'same' if padding_same else ''
    conv_layer = partial(StdConv2dSame, eps=1e-8) if padding_same else partial(StdConv2d, eps=1e-8)
    if len(layers):
        backbone = ResNetV2(
            layers=layers, num_classes=0, global_pool='', in_chans=kwargs.get('in_chans', 3),
            preact=False, stem_type=stem_type, conv_layer=conv_layer)
    else:
        backbone = create_resnetv2_stem(
            kwargs.get('in_chans', 3), stem_type=stem_type, preact=False, conv_layer=conv_layer)
    return backbone


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
        'first_conv': 'patch_embed.backbone.stem.conv', 'classifier': 'head',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    # hybrid in-1k models (weights from official JAX impl where they exist)
    'vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
        hf_hub_id='timm/',
        custom_load=True,
        first_conv='patch_embed.backbone.conv'),
    'vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        hf_hub_id='timm/',
        first_conv='patch_embed.backbone.conv', input_size=(3, 384, 384), crop_pct=1.0, custom_load=True),
    'vit_small_r26_s32_224.augreg_in21k_ft_in1k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_light0-wd_0.03-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.03-res_224.npz',
        hf_hub_id='timm/',
        custom_load=True,
    ),
    'vit_small_r26_s32_384.augreg_in21k_ft_in1k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), crop_pct=1.0, custom_load=True),
    'vit_base_r26_s32_224.untrained': _cfg(),
    'vit_base_r50_s16_384.orig_in21k_ft_in1k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), crop_pct=1.0),
    'vit_large_r50_s32_224.augreg_in21k_ft_in1k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz',
        hf_hub_id='timm/',
        custom_load=True,
    ),
    'vit_large_r50_s32_384.augreg_in21k_ft_in1k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), crop_pct=1.0, custom_load=True,
    ),

    # hybrid in-21k models (weights from official Google JAX impl where they exist)
    'vit_tiny_r_s16_p8_224.augreg_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/R_Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz',
        hf_hub_id='timm/',
        num_classes=21843, crop_pct=0.9, first_conv='patch_embed.backbone.conv', custom_load=True),
    'vit_small_r26_s32_224.augreg_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/R26_S_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.03-do_0.0-sd_0.0.npz',
        hf_hub_id='timm/',
        num_classes=21843, crop_pct=0.9, custom_load=True),
    'vit_base_r50_s16_224.orig_in21k': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth',
        hf_hub_id='timm/',
        num_classes=21843, crop_pct=0.9),
    'vit_large_r50_s32_224.augreg_in21k': _cfg(
        url='https://storage.googleapis.com/vit_models/augreg/R50_L_32-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0.npz',
        hf_hub_id='timm/',
        num_classes=21843, crop_pct=0.9, custom_load=True),

    # hybrid models (using timm resnet backbones)
    'vit_small_resnet26d_224.untrained': _cfg(
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'),
    'vit_small_resnet50d_s16_224.untrained': _cfg(
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'),
    'vit_base_resnet26d_224.untrained': _cfg(
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'),
    'vit_base_resnet50d_224.untrained': _cfg(
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, first_conv='patch_embed.backbone.conv1.0'),
})


@register_model
def vit_tiny_r_s16_p8_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 224 x 224.
    """
    backbone = _resnetv2(layers=(), **kwargs)
    model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3)
    model = _create_vision_transformer_hybrid(
        'vit_tiny_r_s16_p8_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_tiny_r_s16_p8_384(pretrained=False, **kwargs) -> VisionTransformer:
    """ R+ViT-Ti/S16 w/ 8x8 patch hybrid @ 384 x 384.
    """
    backbone = _resnetv2(layers=(), **kwargs)
    model_args = dict(patch_size=8, embed_dim=192, depth=12, num_heads=3)
    model = _create_vision_transformer_hybrid(
        'vit_tiny_r_s16_p8_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_small_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ R26+ViT-S/S32 hybrid.
    """
    backbone = _resnetv2((2, 2, 2, 2), **kwargs)
    model_args = dict(embed_dim=384, depth=12, num_heads=6)
    model = _create_vision_transformer_hybrid(
        'vit_small_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_small_r26_s32_384(pretrained=False, **kwargs) -> VisionTransformer:
    """ R26+ViT-S/S32 hybrid.
    """
    backbone = _resnetv2((2, 2, 2, 2), **kwargs)
    model_args = dict(embed_dim=384, depth=12, num_heads=6)
    model = _create_vision_transformer_hybrid(
        'vit_small_r26_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_base_r26_s32_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ R26+ViT-B/S32 hybrid.
    """
    backbone = _resnetv2((2, 2, 2, 2), **kwargs)
    model_args = dict(embed_dim=768, depth=12, num_heads=12)
    model = _create_vision_transformer_hybrid(
        'vit_base_r26_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_base_r50_s16_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ R50+ViT-B/S16 hybrid from original paper (https://arxiv.org/abs/2010.11929).
    """
    backbone = _resnetv2((3, 4, 9), **kwargs)
    model_args = dict(embed_dim=768, depth=12, num_heads=12)
    model = _create_vision_transformer_hybrid(
        'vit_base_r50_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_base_r50_s16_384(pretrained=False, **kwargs) -> VisionTransformer:
    """ R50+ViT-B/16 hybrid from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
    """
    backbone = _resnetv2((3, 4, 9), **kwargs)
    model_args = dict(embed_dim=768, depth=12, num_heads=12)
    model = _create_vision_transformer_hybrid(
        'vit_base_r50_s16_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_large_r50_s32_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ R50+ViT-L/S32 hybrid.
    """
    backbone = _resnetv2((3, 4, 6, 3), **kwargs)
    model_args = dict(embed_dim=1024, depth=24, num_heads=16)
    model = _create_vision_transformer_hybrid(
        'vit_large_r50_s32_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_large_r50_s32_384(pretrained=False, **kwargs) -> VisionTransformer:
    """ R50+ViT-L/S32 hybrid.
    """
    backbone = _resnetv2((3, 4, 6, 3), **kwargs)
    model_args = dict(embed_dim=1024, depth=24, num_heads=16)
    model = _create_vision_transformer_hybrid(
        'vit_large_r50_s32_384', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_small_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ Custom ViT small hybrid w/ ResNet26D stride 32. No pretrained weights.
    """
    backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4])
    model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3)
    model = _create_vision_transformer_hybrid(
        'vit_small_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_small_resnet50d_s16_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ Custom ViT small hybrid w/ ResNet50D 3-stages, stride 16. No pretrained weights.
    """
    backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[3])
    model_args = dict(embed_dim=768, depth=8, num_heads=8, mlp_ratio=3)
    model = _create_vision_transformer_hybrid(
        'vit_small_resnet50d_s16_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_base_resnet26d_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ Custom ViT base hybrid w/ ResNet26D stride 32. No pretrained weights.
    """
    backbone = resnet26d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4])
    model_args = dict(embed_dim=768, depth=12, num_heads=12)
    model = _create_vision_transformer_hybrid(
        'vit_base_resnet26d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_base_resnet50d_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ Custom ViT base hybrid w/ ResNet50D stride 32. No pretrained weights.
    """
    backbone = resnet50d(pretrained=pretrained, in_chans=kwargs.get('in_chans', 3), features_only=True, out_indices=[4])
    model_args = dict(embed_dim=768, depth=12, num_heads=12)
    model = _create_vision_transformer_hybrid(
        'vit_base_resnet50d_224', backbone=backbone, pretrained=pretrained, **dict(model_args, **kwargs))
    return model


register_model_deprecations(__name__, {
    'vit_tiny_r_s16_p8_224_in21k': 'vit_tiny_r_s16_p8_224.augreg_in21k',
    'vit_small_r26_s32_224_in21k': 'vit_small_r26_s32_224.augreg_in21k',
    'vit_base_r50_s16_224_in21k': 'vit_base_r50_s16_224.orig_in21k',
    'vit_base_resnet50_224_in21k': 'vit_base_r50_s16_224.orig_in21k',
    'vit_large_r50_s32_224_in21k': 'vit_large_r50_s32_224.augreg_in21k',
    'vit_base_resnet50_384': 'vit_base_r50_s16_384.orig_in21k_ft_in1k'
})