File size: 94,285 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 |
""" Vision Transformer (ViT) in PyTorch
A PyTorch implement of Vision Transformers as described in:
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale'
- https://arxiv.org/abs/2010.11929
`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers`
- https://arxiv.org/abs/2106.10270
`FlexiViT: One Model for All Patch Sizes`
- https://arxiv.org/abs/2212.08013
The official jax code is released and available at
* https://github.com/google-research/vision_transformer
* https://github.com/google-research/big_vision
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
Hacked together by / Copyright 2020, Ross Wightman
"""
import logging
import math
from collections import OrderedDict
from functools import partial
from typing import Callable, List, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.jit import Final
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD, \
OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_, resample_patch_embed, \
resample_abs_pos_embed, RmsNorm, PatchDropout, use_fused_attn, SwiGLUPacked
from ._builder import build_model_with_cfg
from ._manipulate import named_apply, checkpoint_seq, adapt_input_conv
from ._registry import generate_default_cfgs, register_model, register_model_deprecations
__all__ = ['VisionTransformer'] # model_registry will add each entrypoint fn to this
_logger = logging.getLogger(__name__)
class Attention(nn.Module):
fused_attn: Final[bool]
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_norm=False,
attn_drop=0.,
proj_drop=0.,
norm_layer=nn.LayerNorm,
):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
if self.fused_attn:
x = F.scaled_dot_product_attention(
q, k, v,
dropout_p=self.attn_drop.p,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_norm=False,
proj_drop=0.,
attn_drop=0.,
init_values=None,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
mlp_layer=Mlp,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=proj_drop,
norm_layer=norm_layer,
)
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = mlp_layer(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
return x
class ResPostBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_norm=False,
proj_drop=0.,
attn_drop=0.,
init_values=None,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
mlp_layer=Mlp,
):
super().__init__()
self.init_values = init_values
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=proj_drop,
norm_layer=norm_layer,
)
self.norm1 = norm_layer(dim)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = mlp_layer(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)
self.norm2 = norm_layer(dim)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.init_weights()
def init_weights(self):
# NOTE this init overrides that base model init with specific changes for the block type
if self.init_values is not None:
nn.init.constant_(self.norm1.weight, self.init_values)
nn.init.constant_(self.norm2.weight, self.init_values)
def forward(self, x):
x = x + self.drop_path1(self.norm1(self.attn(x)))
x = x + self.drop_path2(self.norm2(self.mlp(x)))
return x
class ParallelScalingBlock(nn.Module):
""" Parallel ViT block (MLP & Attention in parallel)
Based on:
'Scaling Vision Transformers to 22 Billion Parameters` - https://arxiv.org/abs/2302.05442
"""
fused_attn: Final[bool]
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_norm=False,
proj_drop=0.,
attn_drop=0.,
init_values=None,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
mlp_layer=None, # NOTE: not used
):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
mlp_hidden_dim = int(mlp_ratio * dim)
in_proj_out_dim = mlp_hidden_dim + 3 * dim
self.in_norm = norm_layer(dim)
self.in_proj = nn.Linear(dim, in_proj_out_dim, bias=qkv_bias)
self.in_split = [mlp_hidden_dim] + [dim] * 3
if qkv_bias:
self.register_buffer('qkv_bias', None)
self.register_parameter('mlp_bias', None)
else:
self.register_buffer('qkv_bias', torch.zeros(3 * dim), persistent=False)
self.mlp_bias = nn.Parameter(torch.zeros(mlp_hidden_dim))
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.attn_out_proj = nn.Linear(dim, dim)
self.mlp_drop = nn.Dropout(proj_drop)
self.mlp_act = act_layer()
self.mlp_out_proj = nn.Linear(mlp_hidden_dim, dim)
self.ls = LayerScale(dim, init_values=init_values) if init_values is not None else nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
B, N, C = x.shape
# Combined MLP fc1 & qkv projections
y = self.in_norm(x)
if self.mlp_bias is not None:
# Concat constant zero-bias for qkv w/ trainable mlp_bias.
# Appears faster than adding to x_mlp separately
y = F.linear(y, self.in_proj.weight, torch.cat((self.qkv_bias, self.mlp_bias)))
else:
y = self.in_proj(y)
x_mlp, q, k, v = torch.split(y, self.in_split, dim=-1)
# Dot product attention w/ qk norm
q = self.q_norm(q.view(B, N, self.num_heads, self.head_dim)).transpose(1, 2)
k = self.k_norm(k.view(B, N, self.num_heads, self.head_dim)).transpose(1, 2)
v = v.view(B, N, self.num_heads, self.head_dim).transpose(1, 2)
if self.fused_attn:
x_attn = F.scaled_dot_product_attention(
q, k, v,
dropout_p=self.attn_drop.p,
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x_attn = attn @ v
x_attn = x_attn.transpose(1, 2).reshape(B, N, C)
x_attn = self.attn_out_proj(x_attn)
# MLP activation, dropout, fc2
x_mlp = self.mlp_act(x_mlp)
x_mlp = self.mlp_drop(x_mlp)
x_mlp = self.mlp_out_proj(x_mlp)
# Add residual w/ drop path & layer scale applied
y = self.drop_path(self.ls(x_attn + x_mlp))
x = x + y
return x
class ParallelThingsBlock(nn.Module):
""" Parallel ViT block (N parallel attention followed by N parallel MLP)
Based on:
`Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
"""
def __init__(
self,
dim,
num_heads,
num_parallel=2,
mlp_ratio=4.,
qkv_bias=False,
qk_norm=False,
init_values=None,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
mlp_layer=Mlp,
):
super().__init__()
self.num_parallel = num_parallel
self.attns = nn.ModuleList()
self.ffns = nn.ModuleList()
for _ in range(num_parallel):
self.attns.append(nn.Sequential(OrderedDict([
('norm', norm_layer(dim)),
('attn', Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
attn_drop=attn_drop,
proj_drop=proj_drop,
norm_layer=norm_layer,
)),
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()),
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity())
])))
self.ffns.append(nn.Sequential(OrderedDict([
('norm', norm_layer(dim)),
('mlp', mlp_layer(
dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)),
('ls', LayerScale(dim, init_values=init_values) if init_values else nn.Identity()),
('drop_path', DropPath(drop_path) if drop_path > 0. else nn.Identity())
])))
def _forward_jit(self, x):
x = x + torch.stack([attn(x) for attn in self.attns]).sum(dim=0)
x = x + torch.stack([ffn(x) for ffn in self.ffns]).sum(dim=0)
return x
@torch.jit.ignore
def _forward(self, x):
x = x + sum(attn(x) for attn in self.attns)
x = x + sum(ffn(x) for ffn in self.ffns)
return x
def forward(self, x):
if torch.jit.is_scripting() or torch.jit.is_tracing():
return self._forward_jit(x)
else:
return self._forward(x)
class VisionTransformer(nn.Module):
""" Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929
"""
def __init__(
self,
img_size: Union[int, Tuple[int, int]] = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = 'token',
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.,
qkv_bias: bool = True,
qk_norm: bool = False,
init_values: Optional[float] = None,
class_token: bool = True,
no_embed_class: bool = False,
pre_norm: bool = False,
fc_norm: Optional[bool] = None,
drop_rate: float = 0.,
pos_drop_rate: float = 0.,
patch_drop_rate: float = 0.,
proj_drop_rate: float = 0.,
attn_drop_rate: float = 0.,
drop_path_rate: float = 0.,
weight_init: str = '',
embed_layer: Callable = PatchEmbed,
norm_layer: Optional[Callable] = None,
act_layer: Optional[Callable] = None,
block_fn: Callable = Block,
mlp_layer: Callable = Mlp,
):
"""
Args:
img_size: Input image size.
patch_size: Patch size.
in_chans: Number of image input channels.
num_classes: Mumber of classes for classification head.
global_pool: Type of global pooling for final sequence (default: 'token').
embed_dim: Transformer embedding dimension.
depth: Depth of transformer.
num_heads: Number of attention heads.
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
qkv_bias: Enable bias for qkv projections if True.
init_values: Layer-scale init values (layer-scale enabled if not None).
class_token: Use class token.
fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'.
drop_rate: Head dropout rate.
pos_drop_rate: Position embedding dropout rate.
attn_drop_rate: Attention dropout rate.
drop_path_rate: Stochastic depth rate.
weight_init: Weight initialization scheme.
embed_layer: Patch embedding layer.
norm_layer: Normalization layer.
act_layer: MLP activation layer.
block_fn: Transformer block layer.
"""
super().__init__()
assert global_pool in ('', 'avg', 'token')
assert class_token or global_pool != 'token'
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_prefix_tokens = 1 if class_token else 0
self.no_embed_class = no_embed_class
self.grad_checkpointing = False
self.patch_embed = embed_layer(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP)
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)
self.pos_drop = nn.Dropout(p=pos_drop_rate)
if patch_drop_rate > 0:
self.patch_drop = PatchDropout(
patch_drop_rate,
num_prefix_tokens=self.num_prefix_tokens,
)
else:
self.patch_drop = nn.Identity()
self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
block_fn(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_norm=qk_norm,
init_values=init_values,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
mlp_layer=mlp_layer,
)
for i in range(depth)])
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()
# Classifier Head
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if weight_init != 'skip':
self.init_weights(weight_init)
def init_weights(self, mode=''):
assert mode in ('jax', 'jax_nlhb', 'moco', '')
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
trunc_normal_(self.pos_embed, std=.02)
if self.cls_token is not None:
nn.init.normal_(self.cls_token, std=1e-6)
named_apply(get_init_weights_vit(mode, head_bias), self)
def _init_weights(self, m):
# this fn left here for compat with downstream users
init_weights_vit_timm(m)
@torch.jit.ignore()
def load_pretrained(self, checkpoint_path, prefix=''):
_load_weights(self, checkpoint_path, prefix)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'dist_token'}
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes: int, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('', 'avg', 'token')
self.global_pool = global_pool
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def _pos_embed(self, x):
if self.no_embed_class:
# deit-3, updated JAX (big vision)
# position embedding does not overlap with class token, add then concat
x = x + self.pos_embed
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
else:
# original timm, JAX, and deit vit impl
# pos_embed has entry for class token, concat then add
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.pos_embed
return self.pos_drop(x)
def _intermediate_layers(
self,
x: torch.Tensor,
n: Union[int, Sequence] = 1,
):
outputs, num_blocks = [], len(self.blocks)
take_indices = set(range(num_blocks - n, num_blocks) if isinstance(n, int) else n)
# forward pass
x = self.patch_embed(x)
x = self._pos_embed(x)
x = self.patch_drop(x)
x = self.norm_pre(x)
for i, blk in enumerate(self.blocks):
x = blk(x)
if i in take_indices:
outputs.append(x)
return outputs
def get_intermediate_layers(
self,
x: torch.Tensor,
n: Union[int, Sequence] = 1,
reshape: bool = False,
return_class_token: bool = False,
norm: bool = False,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
""" Intermediate layer accessor (NOTE: This is a WIP experiment).
Inspired by DINO / DINOv2 interface
"""
# take last n blocks if n is an int, if in is a sequence, select by matching indices
outputs = self._intermediate_layers(x, n)
if norm:
outputs = [self.norm(out) for out in outputs]
class_tokens = [out[:, 0:self.num_prefix_tokens] for out in outputs]
outputs = [out[:, self.num_prefix_tokens:] for out in outputs]
if reshape:
grid_size = self.patch_embed.grid_size
outputs = [
out.reshape(x.shape[0], grid_size[0], grid_size[1], -1).permute(0, 3, 1, 2).contiguous()
for out in outputs
]
if return_class_token:
return tuple(zip(outputs, class_tokens))
return tuple(outputs)
def forward_features(self, x):
x = self.patch_embed(x)
x = self._pos_embed(x)
x = self.patch_drop(x)
x = self.norm_pre(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
x = self.fc_norm(x)
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def init_weights_vit_timm(module: nn.Module, name: str = ''):
""" ViT weight initialization, original timm impl (for reproducibility) """
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, 'init_weights'):
module.init_weights()
def init_weights_vit_jax(module: nn.Module, name: str = '', head_bias: float = 0.):
""" ViT weight initialization, matching JAX (Flax) impl """
if isinstance(module, nn.Linear):
if name.startswith('head'):
nn.init.zeros_(module.weight)
nn.init.constant_(module.bias, head_bias)
else:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.normal_(module.bias, std=1e-6) if 'mlp' in name else nn.init.zeros_(module.bias)
elif isinstance(module, nn.Conv2d):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, 'init_weights'):
module.init_weights()
def init_weights_vit_moco(module: nn.Module, name: str = ''):
""" ViT weight initialization, matching moco-v3 impl minus fixed PatchEmbed """
if isinstance(module, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(module.weight.shape[0] // 3 + module.weight.shape[1]))
nn.init.uniform_(module.weight, -val, val)
else:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, 'init_weights'):
module.init_weights()
def get_init_weights_vit(mode='jax', head_bias: float = 0.):
if 'jax' in mode:
return partial(init_weights_vit_jax, head_bias=head_bias)
elif 'moco' in mode:
return init_weights_vit_moco
else:
return init_weights_vit_timm
def resize_pos_embed(
posemb,
posemb_new,
num_prefix_tokens=1,
gs_new=(),
interpolation='bicubic',
antialias=False,
):
""" Rescale the grid of position embeddings when loading from state_dict.
*DEPRECATED* This function is being deprecated in favour of resample_abs_pos_embed
Adapted from:
https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
"""
ntok_new = posemb_new.shape[1]
if num_prefix_tokens:
posemb_prefix, posemb_grid = posemb[:, :num_prefix_tokens], posemb[0, num_prefix_tokens:]
ntok_new -= num_prefix_tokens
else:
posemb_prefix, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
if not len(gs_new): # backwards compatibility
gs_new = [int(math.sqrt(ntok_new))] * 2
assert len(gs_new) >= 2
_logger.info(f'Resized position embedding: {posemb.shape} ({[gs_old, gs_old]}) to {posemb_new.shape} ({gs_new}).')
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode=interpolation, antialias=antialias, align_corners=False)
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
posemb = torch.cat([posemb_prefix, posemb_grid], dim=1)
return posemb
@torch.no_grad()
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
""" Load weights from .npz checkpoints for official Google Brain Flax implementation
"""
import numpy as np
def _n2p(w, t=True):
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
w = w.flatten()
if t:
if w.ndim == 4:
w = w.transpose([3, 2, 0, 1])
elif w.ndim == 3:
w = w.transpose([2, 0, 1])
elif w.ndim == 2:
w = w.transpose([1, 0])
return torch.from_numpy(w)
w = np.load(checkpoint_path)
interpolation = 'bilinear'
antialias = False
big_vision = False
if not prefix:
if 'opt/target/embedding/kernel' in w:
prefix = 'opt/target/'
elif 'params/embedding/kernel' in w:
prefix = 'params/'
big_vision = True
if hasattr(model.patch_embed, 'backbone'):
# hybrid
backbone = model.patch_embed.backbone
stem_only = not hasattr(backbone, 'stem')
stem = backbone if stem_only else backbone.stem
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
if not stem_only:
for i, stage in enumerate(backbone.stages):
for j, block in enumerate(stage.blocks):
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
for r in range(3):
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
if block.downsample is not None:
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
else:
embed_conv_w = adapt_input_conv(
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
if embed_conv_w.shape[-2:] != model.patch_embed.proj.weight.shape[-2:]:
embed_conv_w = resample_patch_embed(
embed_conv_w,
model.patch_embed.proj.weight.shape[-2:],
interpolation=interpolation,
antialias=antialias,
verbose=True,
)
model.patch_embed.proj.weight.copy_(embed_conv_w)
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
if model.cls_token is not None:
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
if big_vision:
pos_embed_w = _n2p(w[f'{prefix}pos_embedding'], t=False)
else:
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
if pos_embed_w.shape != model.pos_embed.shape:
old_shape = pos_embed_w.shape
num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1)
pos_embed_w = resample_abs_pos_embed( # resize pos embedding when different size from pretrained weights
pos_embed_w,
new_size=model.patch_embed.grid_size,
num_prefix_tokens=num_prefix_tokens,
interpolation=interpolation,
antialias=antialias,
verbose=True,
)
model.pos_embed.copy_(pos_embed_w)
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
# NOTE representation layer has been removed, not used in latest 21k/1k pretrained weights
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
mha_sub, b_sub, ln1_sub = (0, 0, 1) if big_vision else (1, 3, 2)
for i, block in enumerate(model.blocks.children()):
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
mha_prefix = block_prefix + f'MultiHeadDotProductAttention_{mha_sub}/'
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
block.attn.qkv.weight.copy_(torch.cat([
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
block.attn.qkv.bias.copy_(torch.cat([
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
for r in range(2):
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/kernel']))
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/bias']))
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/scale']))
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/bias']))
def _convert_openai_clip(state_dict, model):
out_dict = {}
swaps = [
('visual.', ''), ('conv1', 'patch_embed.proj'), ('positional_embedding', 'pos_embed'),
('transformer.resblocks.', 'blocks.'), ('ln_pre', 'norm_pre'), ('ln_post', 'norm'), ('ln_', 'norm'),
('in_proj_', 'qkv.'), ('out_proj', 'proj'), ('mlp.c_fc', 'mlp.fc1'), ('mlp.c_proj', 'mlp.fc2'),
]
for k, v in state_dict.items():
if not k.startswith('visual.'):
continue
for sp in swaps:
k = k.replace(sp[0], sp[1])
if k == 'proj':
k = 'head.weight'
v = v.transpose(0, 1)
out_dict['head.bias'] = torch.zeros(v.shape[0])
elif k == 'class_embedding':
k = 'cls_token'
v = v.unsqueeze(0).unsqueeze(1)
elif k == 'pos_embed':
v = v.unsqueeze(0)
if v.shape[1] != model.pos_embed.shape[1]:
# To resize pos embedding when using model at different size from pretrained weights
v = resize_pos_embed(
v,
model.pos_embed,
0 if getattr(model, 'no_embed_class') else getattr(model, 'num_prefix_tokens', 1),
model.patch_embed.grid_size
)
out_dict[k] = v
return out_dict
def _convert_dinov2(state_dict, model):
import re
out_dict = {}
for k, v in state_dict.items():
if k == "mask_token":
continue
elif re.match(r"blocks\.(\d+)\.mlp\.w12\.(?:weight|bias)", k):
out_dict[k.replace("w12", "fc1")] = v
continue
elif re.match(r"blocks\.(\d+)\.mlp\.w3\.(?:weight|bias)", k):
out_dict[k.replace("w3", "fc2")] = v
continue
out_dict[k] = v
return out_dict
def _convert_ijepa(state_dict, model):
out_dict = {}
for k, v in state_dict['encoder'].items():
if k.startswith('module.'):
k = k[7:]
if k.startswith('norm.'):
k = 'fc_norm.' + k[5:]
out_dict[k] = v
return out_dict
def checkpoint_filter_fn(
state_dict,
model,
adapt_layer_scale=False,
interpolation='bicubic',
antialias=True,
):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
import re
out_dict = {}
state_dict = state_dict.get('model', state_dict)
state_dict = state_dict.get('state_dict', state_dict)
if 'visual.class_embedding' in state_dict:
return _convert_openai_clip(state_dict, model)
if "mask_token" in state_dict:
state_dict = _convert_dinov2(state_dict, model)
if "encoder" in state_dict:
state_dict = _convert_ijepa(state_dict, model)
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
O, I, H, W = model.patch_embed.proj.weight.shape
if len(v.shape) < 4:
# For old models that I trained prior to conv based patchification
O, I, H, W = model.patch_embed.proj.weight.shape
v = v.reshape(O, -1, H, W)
if v.shape[-1] != W or v.shape[-2] != H:
v = resample_patch_embed(
v,
(H, W),
interpolation=interpolation,
antialias=antialias,
verbose=True,
)
elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
# To resize pos embedding when using model at different size from pretrained weights
num_prefix_tokens = 0 if getattr(model, 'no_embed_class', False) else getattr(model, 'num_prefix_tokens', 1)
v = resample_abs_pos_embed(
v,
new_size=model.patch_embed.grid_size,
num_prefix_tokens=num_prefix_tokens,
interpolation=interpolation,
antialias=antialias,
verbose=True,
)
elif adapt_layer_scale and 'gamma_' in k:
# remap layer-scale gamma into sub-module (deit3 models)
k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k)
elif 'pre_logits' in k:
# NOTE representation layer removed as not used in latest 21k/1k pretrained weights
continue
out_dict[k] = v
return out_dict
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
# re-finetuned augreg 21k FT on in1k weights
'vit_base_patch16_224.augreg2_in21k_ft_in1k': _cfg(
hf_hub_id='timm/'),
'vit_base_patch16_384.augreg2_in21k_ft_in1k': _cfg(),
'vit_base_patch8_224.augreg2_in21k_ft_in1k': _cfg(
hf_hub_id='timm/'),
# How to train your ViT (augreg) weights, pretrained on 21k FT on in1k
'vit_tiny_patch16_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_tiny_patch16_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
hf_hub_id='timm/',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_small_patch32_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_small_patch32_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
hf_hub_id='timm/',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_small_patch16_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_small_patch16_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
hf_hub_id='timm/',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch32_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_base_patch32_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz',
hf_hub_id='timm/',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch16_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_base_patch16_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
hf_hub_id='timm/',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch8_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_large_patch16_224.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_large_patch16_384.augreg_in21k_ft_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
hf_hub_id='timm/',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
# patch models (weights from official Google JAX impl) pretrained on in21k FT on in1k
'vit_base_patch16_224.orig_in21k_ft_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
hf_hub_id='timm/'),
'vit_base_patch16_384.orig_in21k_ft_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth',
hf_hub_id='timm/',
input_size=(3, 384, 384), crop_pct=1.0),
'vit_large_patch32_384.orig_in21k_ft_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
hf_hub_id='timm/',
input_size=(3, 384, 384), crop_pct=1.0),
# How to train your ViT (augreg) weights trained on in1k only
'vit_small_patch16_224.augreg_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_small_patch16_384.augreg_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz',
hf_hub_id='timm/',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch32_224.augreg_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_base_patch32_384.augreg_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i1k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
hf_hub_id='timm/',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_base_patch16_224.augreg_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i1k-300ep-lr_0.001-aug_strong2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_224.npz',
hf_hub_id='timm/',
custom_load=True),
'vit_base_patch16_384.augreg_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i1k-300ep-lr_0.001-aug_strong2-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz',
hf_hub_id='timm/',
custom_load=True, input_size=(3, 384, 384), crop_pct=1.0),
'vit_large_patch14_224.untrained': _cfg(url=''),
'vit_huge_patch14_224.untrained': _cfg(url=''),
'vit_giant_patch14_224.untrained': _cfg(url=''),
'vit_gigantic_patch14_224.untrained': _cfg(url=''),
# patch models, imagenet21k (weights from official Google JAX impl)
'vit_large_patch32_224.orig_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
hf_hub_id='timm/',
num_classes=21843),
'vit_huge_patch14_224.orig_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/imagenet21k/ViT-H_14.npz',
hf_hub_id='timm/',
custom_load=True, num_classes=21843),
# How to train your ViT (augreg) weights, pretrained on in21k
'vit_tiny_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz',
hf_hub_id='timm/',
custom_load=True, num_classes=21843),
'vit_small_patch32_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
hf_hub_id='timm/',
custom_load=True, num_classes=21843),
'vit_small_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz',
hf_hub_id='timm/',
custom_load=True, num_classes=21843),
'vit_base_patch32_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_medium1-wd_0.03-do_0.0-sd_0.0.npz',
hf_hub_id='timm/',
custom_load=True, num_classes=21843),
'vit_base_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
hf_hub_id='timm/',
custom_load=True, num_classes=21843),
'vit_base_patch8_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz',
hf_hub_id='timm/',
custom_load=True, num_classes=21843),
'vit_large_patch16_224.augreg_in21k': _cfg(
url='https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1.npz',
hf_hub_id='timm/',
custom_load=True, num_classes=21843),
# SAM trained models (https://arxiv.org/abs/2106.01548)
'vit_base_patch32_224.sam_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/sam/ViT-B_32.npz', custom_load=True,
hf_hub_id='timm/'),
'vit_base_patch16_224.sam_in1k': _cfg(
url='https://storage.googleapis.com/vit_models/sam/ViT-B_16.npz', custom_load=True,
hf_hub_id='timm/'),
# DINO pretrained - https://arxiv.org/abs/2104.14294 (no classifier head, for fine-tune only)
'vit_small_patch16_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth',
hf_hub_id='timm/',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_small_patch8_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth',
hf_hub_id='timm/',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_base_patch16_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth',
hf_hub_id='timm/',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_base_patch8_224.dino': _cfg(
url='https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth',
hf_hub_id='timm/',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
# DINOv2 pretrained - https://arxiv.org/abs/2304.07193 (no classifier head, for fine-tune/features only)
'vit_small_patch14_dinov2.lvd142m': _cfg(
url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth',
hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0,
input_size=(3, 518, 518), crop_pct=1.0),
'vit_base_patch14_dinov2.lvd142m': _cfg(
url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth',
hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0,
input_size=(3, 518, 518), crop_pct=1.0),
'vit_large_patch14_dinov2.lvd142m': _cfg(
url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth',
hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0,
input_size=(3, 518, 518), crop_pct=1.0),
'vit_giant_patch14_dinov2.lvd142m': _cfg(
url='https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth',
hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0,
input_size=(3, 518, 518), crop_pct=1.0),
# ViT ImageNet-21K-P pretraining by MILL
'vit_base_patch16_224_miil.in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_in21k_miil-887286df.pth',
hf_hub_id='timm/',
mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear', num_classes=11221),
'vit_base_patch16_224_miil.in21k_ft_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/vit_base_patch16_224_1k_miil_84_4-2deb18e3.pth',
hf_hub_id='timm/',
mean=(0., 0., 0.), std=(1., 1., 1.), crop_pct=0.875, interpolation='bilinear'),
# Custom timm variants
'vit_base_patch16_rpn_224.sw_in1k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/vit_base_patch16_rpn_224-sw-3b07e89d.pth',
hf_hub_id='timm/'),
'vit_medium_patch16_gap_240.sw_in12k': _cfg(
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95, num_classes=11821),
'vit_medium_patch16_gap_256.sw_in12k_ft_in1k': _cfg(
hf_hub_id='timm/',
input_size=(3, 256, 256), crop_pct=0.95),
'vit_medium_patch16_gap_384.sw_in12k_ft_in1k': _cfg(
hf_hub_id='timm/',
input_size=(3, 384, 384), crop_pct=0.95, crop_mode='squash'),
'vit_base_patch16_gap_224': _cfg(),
# CLIP pretrained image tower and related fine-tuned weights
'vit_base_patch32_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_384.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 384, 384)),
'vit_base_patch32_clip_448.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, input_size=(3, 448, 448)),
'vit_base_patch16_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95),
'vit_base_patch16_clip_384.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'),
'vit_large_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0),
'vit_large_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_base_patch32_clip_224.openai_ft_in12k_in1k': _cfg(
# hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k_in1k', # FIXME weight exists, need to push
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch32_clip_384.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=0.95, input_size=(3, 384, 384), crop_mode='squash'),
'vit_base_patch16_clip_224.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=0.95),
'vit_base_patch16_clip_384.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=0.95, input_size=(3, 384, 384), crop_mode='squash'),
'vit_large_patch14_clip_224.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_large_patch14_clip_336.openai_ft_in12k_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_base_patch32_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_base_patch16_clip_384.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'),
'vit_large_patch14_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0),
'vit_large_patch14_clip_336.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_huge_patch14_clip_224.laion2b_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_huge_patch14_clip_336.laion2b_ft_in1k': _cfg(
hf_hub_id='',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 336, 336), crop_mode='squash'),
'vit_base_patch32_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD),
'vit_base_patch16_clip_384.openai_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 384, 384), crop_mode='squash'),
'vit_large_patch14_clip_224.openai_ft_in1k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0),
'vit_base_patch32_clip_224.laion2b_ft_in12k': _cfg(
#hf_hub_id='timm/vit_base_patch32_clip_224.laion2b_ft_in12k', # FIXME weight exists, need to push
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_base_patch16_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_large_patch14_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='timm/',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=11821),
'vit_huge_patch14_clip_224.laion2b_ft_in12k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821),
'vit_base_patch32_clip_224.openai_ft_in12k': _cfg(
# hf_hub_id='timm/vit_base_patch32_clip_224.openai_ft_in12k', # FIXME weight exists, need to push
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_base_patch16_clip_224.openai_ft_in12k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=11821),
'vit_large_patch14_clip_224.openai_ft_in12k': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=11821),
'vit_base_patch32_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-B-32-laion2B-s34B-b79K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_base_patch16_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-B-16-laion2B-s34B-b88K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512),
'vit_base_patch16_clip_224.datacompxl': _cfg(
hf_hub_id='laion/CLIP-ViT-B-16-DataComp.XL-s13B-b90K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=512),
'vit_large_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-L-14-laion2B-s32B-b82K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, crop_pct=1.0, num_classes=768),
'vit_large_patch14_clip_224.datacompxl': _cfg(
hf_hub_id='laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768),
'vit_huge_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-H-14-laion2B-s32B-b79K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024),
'vit_giant_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-g-14-laion2B-s12B-b42K',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1024),
'vit_gigantic_patch14_clip_224.laion2b': _cfg(
hf_hub_id='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k',
hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=1280),
'vit_base_patch32_clip_224.openai': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_base_patch16_clip_224.openai': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, num_classes=512),
'vit_large_patch14_clip_224.openai': _cfg(
hf_hub_id='timm/',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD, crop_pct=1.0, num_classes=768),
'vit_large_patch14_clip_336.openai': _cfg(
hf_hub_id='timm/', hf_hub_filename='open_clip_pytorch_model.bin',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
crop_pct=1.0, input_size=(3, 336, 336), num_classes=768),
# experimental (may be removed)
'vit_base_patch32_plus_256.untrained': _cfg(url='', input_size=(3, 256, 256), crop_pct=0.95),
'vit_base_patch16_plus_240.untrained': _cfg(url='', input_size=(3, 240, 240), crop_pct=0.95),
'vit_small_patch16_36x1_224.untrained': _cfg(url=''),
'vit_small_patch16_18x2_224.untrained': _cfg(url=''),
'vit_base_patch16_18x2_224.untrained': _cfg(url=''),
# EVA fine-tuned weights from MAE style MIM - EVA-CLIP target pretrain
# https://github.com/baaivision/EVA/blob/7ecf2c0a370d97967e86d047d7af9188f78d2df3/eva/README.md#eva-l-learning-better-mim-representations-from-eva-clip
'eva_large_patch14_196.in22k_ft_in22k_in1k': _cfg(
# hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_196px_21k_to_1k_ft_88p6.pt',
hf_hub_id='timm/', license='mit',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 196, 196), crop_pct=1.0),
'eva_large_patch14_336.in22k_ft_in22k_in1k': _cfg(
# hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_336px_21k_to_1k_ft_89p2.pt',
hf_hub_id='timm/', license='mit',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'),
'eva_large_patch14_196.in22k_ft_in1k': _cfg(
# hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_196px_1k_ft_88p0.pt',
hf_hub_id='timm/', license='mit',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 196, 196), crop_pct=1.0),
'eva_large_patch14_336.in22k_ft_in1k': _cfg(
# hf_hub_id='BAAI/EVA', hf_hub_filename='eva_l_psz14_336px_1k_ft_88p65.pt',
hf_hub_id='timm/', license='mit',
mean=OPENAI_CLIP_MEAN, std=OPENAI_CLIP_STD,
input_size=(3, 336, 336), crop_pct=1.0, crop_mode='squash'),
'flexivit_small.1200ep_in1k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_s_i1k.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95),
'flexivit_small.600ep_in1k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_s_i1k_600ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95),
'flexivit_small.300ep_in1k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_s_i1k_300ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95),
'flexivit_base.1200ep_in1k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i1k.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95),
'flexivit_base.600ep_in1k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i1k_600ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95),
'flexivit_base.300ep_in1k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i1k_300ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95),
'flexivit_base.1000ep_in21k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i21k_1000ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843),
'flexivit_base.300ep_in21k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_b_i21k_300ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843),
'flexivit_large.1200ep_in1k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_l_i1k.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95),
'flexivit_large.600ep_in1k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_l_i1k_600ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95),
'flexivit_large.300ep_in1k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/flexivit_l_i1k_300ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95),
'flexivit_base.patch16_in21k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/vit_b16_i21k_300ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843),
'flexivit_base.patch30_in21k': _cfg(
url='https://storage.googleapis.com/big_vision/flexivit/vit_b30_i21k_300ep.npz', custom_load=True,
hf_hub_id='timm/',
input_size=(3, 240, 240), crop_pct=0.95, num_classes=21843),
'vit_base_patch16_xp_224.untrained': _cfg(url=''),
'vit_large_patch14_xp_224.untrained': _cfg(url=''),
'vit_huge_patch14_xp_224.untrained': _cfg(url=''),
'vit_base_patch16_224.mae': _cfg(
url='https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth',
hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_large_patch16_224.mae': _cfg(
url='https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_large.pth',
hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_huge_patch14_224.mae': _cfg(
url='https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_huge.pth',
hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_huge_patch14_224_ijepa.in1k': _cfg(
url='https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.14-300e.pth.tar',
# hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_huge_patch14_224_ijepa.in22k': _cfg(
url='https://dl.fbaipublicfiles.com/ijepa/IN22K-vit.h.14-900e.pth.tar',
# hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_huge_patch16_448_ijepa.in1k': _cfg(
url='https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.16-448px-300e.pth.tar',
# hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
'vit_gigantic_patch16_224_ijepa.in22k': _cfg(
url='https://dl.fbaipublicfiles.com/ijepa/IN22K-vit.g.16-600e.pth.tar',
# hf_hub_id='timm/',
license='cc-by-nc-4.0',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, num_classes=0),
})
def _create_vision_transformer(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
if 'flexi' in variant:
# FIXME Google FlexiViT pretrained models have a strong preference for bilinear patch / embed
# interpolation, other pretrained models resize better w/ anti-aliased bicubic interpolation.
_filter_fn = partial(checkpoint_filter_fn, interpolation='bilinear', antialias=False)
else:
_filter_fn = checkpoint_filter_fn
return build_model_with_cfg(
VisionTransformer,
variant,
pretrained,
pretrained_filter_fn=_filter_fn,
**kwargs,
)
@register_model
def vit_tiny_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Tiny (Vit-Ti/16)
"""
model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3)
model = _create_vision_transformer('vit_tiny_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_tiny_patch16_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Tiny (Vit-Ti/16) @ 384x384.
"""
model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3)
model = _create_vision_transformer('vit_tiny_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_small_patch32_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Small (ViT-S/32)
"""
model_args = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6)
model = _create_vision_transformer('vit_small_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_small_patch32_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Small (ViT-S/32) at 384x384.
"""
model_args = dict(patch_size=32, embed_dim=384, depth=12, num_heads=6)
model = _create_vision_transformer('vit_small_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Small (ViT-S/16)
"""
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6)
model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_small_patch16_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Small (ViT-S/16)
"""
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6)
model = _create_vision_transformer('vit_small_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_small_patch8_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Small (ViT-S/8)
"""
model_args = dict(patch_size=8, embed_dim=384, depth=12, num_heads=6)
model = _create_vision_transformer('vit_small_patch8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch32_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k, source https://github.com/google-research/vision_transformer.
"""
model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12)
model = _create_vision_transformer('vit_base_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch32_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
"""
model_args = dict(patch_size=32, embed_dim=768, depth=12, num_heads=12)
model = _create_vision_transformer('vit_base_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12)
model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12)
model = _create_vision_transformer('vit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch8_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base (ViT-B/8) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
"""
model_args = dict(patch_size=8, embed_dim=768, depth=12, num_heads=12)
model = _create_vision_transformer('vit_base_patch8_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_large_patch32_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929). No pretrained weights.
"""
model_args = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16)
model = _create_vision_transformer('vit_large_patch32_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_large_patch32_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
"""
model_args = dict(patch_size=32, embed_dim=1024, depth=24, num_heads=16)
model = _create_vision_transformer('vit_large_patch32_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_large_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
"""
model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16)
model = _create_vision_transformer('vit_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_large_patch16_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 384x384, source https://github.com/google-research/vision_transformer.
"""
model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16)
model = _create_vision_transformer('vit_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_large_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Large model (ViT-L/14)
"""
model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16)
model = _create_vision_transformer('vit_large_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_huge_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).
"""
model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16)
model = _create_vision_transformer('vit_huge_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_giant_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Giant (little-g) model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
"""
model_args = dict(patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16)
model = _create_vision_transformer('vit_giant_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_gigantic_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Gigantic (big-G) model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
"""
model_args = dict(patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16)
model = _create_vision_transformer(
'vit_gigantic_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_224_miil(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False)
model = _create_vision_transformer(
'vit_base_patch16_224_miil', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_medium_patch16_gap_240(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Medium (ViT-M/16) w/o class token, w/ avg-pool @ 240x240
"""
model_args = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=False,
global_pool='avg', qkv_bias=False, init_values=1e-6, fc_norm=False)
model = _create_vision_transformer(
'vit_medium_patch16_gap_240', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_medium_patch16_gap_256(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Medium (ViT-M/16) w/o class token, w/ avg-pool @ 256x256
"""
model_args = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=False,
global_pool='avg', qkv_bias=False, init_values=1e-6, fc_norm=False)
model = _create_vision_transformer(
'vit_medium_patch16_gap_256', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_medium_patch16_gap_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Medium (ViT-M/16) w/o class token, w/ avg-pool @ 384x384
"""
model_args = dict(
patch_size=16, embed_dim=512, depth=12, num_heads=8, class_token=False,
global_pool='avg', qkv_bias=False, init_values=1e-6, fc_norm=False)
model = _create_vision_transformer(
'vit_medium_patch16_gap_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_gap_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base (ViT-B/16) w/o class token, w/ avg-pool @ 256x256
"""
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=16, class_token=False, global_pool='avg', fc_norm=False)
model = _create_vision_transformer(
'vit_base_patch16_gap_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch32_clip_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-B/32 CLIP image tower @ 224x224
"""
model_args = dict(
patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_base_patch32_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch32_clip_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-B/32 CLIP image tower @ 384x384
"""
model_args = dict(
patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_base_patch32_clip_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch32_clip_448(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-B/32 CLIP image tower @ 448x448
"""
model_args = dict(
patch_size=32, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_base_patch32_clip_448', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_clip_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-B/16 CLIP image tower
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_base_patch16_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_clip_384(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-B/16 CLIP image tower @ 384x384
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_base_patch16_clip_384', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_large_patch14_clip_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Large model (ViT-L/14) CLIP image tower
"""
model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_large_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_large_patch14_clip_336(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Large model (ViT-L/14) CLIP image tower @ 336x336
"""
model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_large_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_huge_patch14_clip_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Huge model (ViT-H/14) CLIP image tower.
"""
model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_huge_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_huge_patch14_clip_336(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Huge model (ViT-H/14) CLIP image tower @ 336x336
"""
model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_huge_patch14_clip_336', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_giant_patch14_clip_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Giant (little-g) model (ViT-g/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
Pretrained weights from CLIP image tower.
"""
model_args = dict(
patch_size=14, embed_dim=1408, mlp_ratio=48/11, depth=40, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_giant_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_gigantic_patch14_clip_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-bigG model (ViT-G/14) from `Scaling Vision Transformers` - https://arxiv.org/abs/2106.04560
Pretrained weights from CLIP image tower.
"""
model_args = dict(
patch_size=14, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16, pre_norm=True, norm_layer=nn.LayerNorm)
model = _create_vision_transformer(
'vit_gigantic_patch14_clip_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
# Experimental models below
@register_model
def vit_base_patch32_plus_256(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base (ViT-B/32+)
"""
model_args = dict(patch_size=32, embed_dim=896, depth=12, num_heads=14, init_values=1e-5)
model = _create_vision_transformer(
'vit_base_patch32_plus_256', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_plus_240(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base (ViT-B/16+)
"""
model_args = dict(patch_size=16, embed_dim=896, depth=12, num_heads=14, init_values=1e-5)
model = _create_vision_transformer(
'vit_base_patch16_plus_240', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_rpn_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base (ViT-B/16) w/ residual post-norm
"""
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, qkv_bias=False, init_values=1e-5,
class_token=False, block_fn=ResPostBlock, global_pool='avg')
model = _create_vision_transformer(
'vit_base_patch16_rpn_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_small_patch16_36x1_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base w/ LayerScale + 36 x 1 (36 block serial) config. Experimental, may remove.
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow.
"""
model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=6, init_values=1e-5)
model = _create_vision_transformer(
'vit_small_patch16_36x1_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_small_patch16_18x2_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Small w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove.
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
Paper focuses on 24x2 + 48x1 for 'Small' width but those are extremely slow.
"""
model_args = dict(
patch_size=16, embed_dim=384, depth=18, num_heads=6, init_values=1e-5, block_fn=ParallelThingsBlock)
model = _create_vision_transformer(
'vit_small_patch16_18x2_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_18x2_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Base w/ LayerScale + 18 x 2 (36 block parallel) config. Experimental, may remove.
Based on `Three things everyone should know about Vision Transformers` - https://arxiv.org/abs/2203.09795
"""
model_args = dict(
patch_size=16, embed_dim=768, depth=18, num_heads=12, init_values=1e-5, block_fn=ParallelThingsBlock)
model = _create_vision_transformer(
'vit_base_patch16_18x2_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def eva_large_patch14_196(pretrained=False, **kwargs) -> VisionTransformer:
""" EVA-large model https://arxiv.org/abs/2211.07636 /via MAE MIM pretrain"""
model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, global_pool='avg')
model = _create_vision_transformer(
'eva_large_patch14_196', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def eva_large_patch14_336(pretrained=False, **kwargs) -> VisionTransformer:
""" EVA-large model https://arxiv.org/abs/2211.07636 via MAE MIM pretrain"""
model_args = dict(patch_size=14, embed_dim=1024, depth=24, num_heads=16, global_pool='avg')
model = _create_vision_transformer('eva_large_patch14_336', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def flexivit_small(pretrained=False, **kwargs) -> VisionTransformer:
""" FlexiViT-Small
"""
model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True)
model = _create_vision_transformer('flexivit_small', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def flexivit_base(pretrained=False, **kwargs) -> VisionTransformer:
""" FlexiViT-Base
"""
model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True)
model = _create_vision_transformer('flexivit_base', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def flexivit_large(pretrained=False, **kwargs) -> VisionTransformer:
""" FlexiViT-Large
"""
model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True)
model = _create_vision_transformer('flexivit_large', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch16_xp_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Large model (ViT-L/14) w/ parallel blocks and qk norm enabled.
"""
model_args = dict(
patch_size=16, embed_dim=768, depth=12, num_heads=12, pre_norm=True, no_embed_class=True,
norm_layer=RmsNorm, block_fn=ParallelScalingBlock, qkv_bias=False, qk_norm=True,
)
model = _create_vision_transformer(
'vit_base_patch16_xp_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_large_patch14_xp_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Large model (ViT-L/14) w/ parallel blocks and qk norm enabled.
"""
model_args = dict(
patch_size=14, embed_dim=1024, depth=24, num_heads=16, pre_norm=True, no_embed_class=True,
norm_layer=RmsNorm, block_fn=ParallelScalingBlock, qkv_bias=False, qk_norm=True,
)
model = _create_vision_transformer(
'vit_large_patch14_xp_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_huge_patch14_xp_224(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Huge model (ViT-H/14) w/ parallel blocks and qk norm enabled.
"""
model_args = dict(
patch_size=14, embed_dim=1280, depth=32, num_heads=16, pre_norm=True, no_embed_class=True,
norm_layer=RmsNorm, block_fn=ParallelScalingBlock, qkv_bias=False, qk_norm=True,
)
model = _create_vision_transformer(
'vit_huge_patch14_xp_224', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_small_patch14_dinov2(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-S/14 for DINOv2
"""
model_args = dict(
patch_size=14, embed_dim=384, depth=12, num_heads=6, init_values=1e-5, img_size=518,
)
model = _create_vision_transformer(
'vit_small_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_base_patch14_dinov2(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-B/14 for DINOv2
"""
model_args = dict(
patch_size=14, embed_dim=768, depth=12, num_heads=12, init_values=1e-5, img_size=518,
)
model = _create_vision_transformer(
'vit_base_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_large_patch14_dinov2(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-L/14 for DINOv2
"""
model_args = dict(
patch_size=14, embed_dim=1024, depth=24, num_heads=16, init_values=1e-5, img_size=518,
)
model = _create_vision_transformer(
'vit_large_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_giant_patch14_dinov2(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-G/14 for DINOv2
"""
# The hidden_features of SwiGLU is calculated by:
# hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
# When embed_dim=1536, hidden_features=4096
# With SwiGLUPacked, we need to set hidden_features = 2 * 4096 = 8192
model_args = dict(
patch_size=14, embed_dim=1536, depth=40, num_heads=24, init_values=1e-5,
mlp_ratio=2.66667 * 2, mlp_layer=SwiGLUPacked, img_size=518, act_layer=nn.SiLU
)
model = _create_vision_transformer(
'vit_giant_patch14_dinov2', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_huge_patch14_224_ijepa(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Huge model (ViT-H/14) from `I-JEPA` - https://arxiv.org/abs/2301.08243
"""
model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, class_token=False, global_pool='avg')
model = _create_vision_transformer('vit_huge_patch14_224_ijepa', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_huge_patch16_448_ijepa(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Huge model (ViT-H/16) from `I-JEPA` - https://arxiv.org/abs/2301.08243
"""
model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16, class_token=False, global_pool='avg', img_size=448)
model = _create_vision_transformer('vit_huge_patch16_448_ijepa', pretrained=pretrained, **dict(model_args, **kwargs))
return model
@register_model
def vit_gigantic_patch16_224_ijepa(pretrained=False, **kwargs) -> VisionTransformer:
""" ViT-Gigantic (big-G) model (ViT-G/16) from `I-JEPA - https://arxiv.org/abs/2301.08243
"""
model_args = dict(patch_size=16, embed_dim=1664, mlp_ratio=64/13, depth=48, num_heads=16)
model = _create_vision_transformer(
'vit_gigantic_patch16_224_ijepa', pretrained=pretrained, **dict(model_args, **kwargs))
return model
register_model_deprecations(__name__, {
'vit_tiny_patch16_224_in21k': 'vit_tiny_patch16_224.augreg_in21k',
'vit_small_patch32_224_in21k': 'vit_small_patch32_224.augreg_in21k',
'vit_small_patch16_224_in21k': 'vit_small_patch16_224.augreg_in21k',
'vit_base_patch32_224_in21k': 'vit_base_patch32_224.augreg_in21k',
'vit_base_patch16_224_in21k': 'vit_base_patch16_224.augreg_in21k',
'vit_base_patch8_224_in21k': 'vit_base_patch8_224.augreg_in21k',
'vit_large_patch32_224_in21k': 'vit_large_patch32_224.orig_in21k',
'vit_large_patch16_224_in21k': 'vit_large_patch16_224.augreg_in21k',
'vit_huge_patch14_224_in21k': 'vit_huge_patch14_224.orig_in21k',
'vit_base_patch32_224_sam': 'vit_base_patch32_224.sam',
'vit_base_patch16_224_sam': 'vit_base_patch16_224.sam',
'vit_small_patch16_224_dino': 'vit_small_patch16_224.dino',
'vit_small_patch8_224_dino': 'vit_small_patch8_224.dino',
'vit_base_patch16_224_dino': 'vit_base_patch16_224.dino',
'vit_base_patch8_224_dino': 'vit_base_patch8_224.dino',
'vit_base_patch16_224_miil_in21k': 'vit_base_patch16_224_miil.in21k',
'vit_base_patch32_224_clip_laion2b': 'vit_base_patch32_clip_224.laion2b',
'vit_large_patch14_224_clip_laion2b': 'vit_large_patch14_clip_224.laion2b',
'vit_huge_patch14_224_clip_laion2b': 'vit_huge_patch14_clip_224.laion2b',
'vit_giant_patch14_224_clip_laion2b': 'vit_giant_patch14_clip_224.laion2b',
})
|