File size: 18,957 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
""" Visformer

Paper: Visformer: The Vision-friendly Transformer - https://arxiv.org/abs/2104.12533

From original at https://github.com/danczs/Visformer

Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman
"""

import torch
import torch.nn as nn

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import to_2tuple, trunc_normal_, DropPath, PatchEmbed, LayerNorm2d, create_classifier, use_fused_attn
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import register_model, generate_default_cfgs

__all__ = ['Visformer']


class SpatialMlp(nn.Module):
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.GELU,
            drop=0.,
            group=8,
            spatial_conv=False,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        drop_probs = to_2tuple(drop)

        self.in_features = in_features
        self.out_features = out_features
        self.spatial_conv = spatial_conv
        if self.spatial_conv:
            if group < 2:  # net setting
                hidden_features = in_features * 5 // 6
            else:
                hidden_features = in_features * 2
        self.hidden_features = hidden_features
        self.group = group
        self.conv1 = nn.Conv2d(in_features, hidden_features, 1, stride=1, padding=0, bias=False)
        self.act1 = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        if self.spatial_conv:
            self.conv2 = nn.Conv2d(
                hidden_features, hidden_features, 3, stride=1, padding=1, groups=self.group, bias=False)
            self.act2 = act_layer()
        else:
            self.conv2 = None
            self.act2 = None
        self.conv3 = nn.Conv2d(hidden_features, out_features, 1, stride=1, padding=0, bias=False)
        self.drop3 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.conv1(x)
        x = self.act1(x)
        x = self.drop1(x)
        if self.conv2 is not None:
            x = self.conv2(x)
            x = self.act2(x)
        x = self.conv3(x)
        x = self.drop3(x)
        return x


class Attention(nn.Module):
    fused_attn: torch.jit.Final[bool]

    def __init__(self, dim, num_heads=8, head_dim_ratio=1., attn_drop=0., proj_drop=0.):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        head_dim = round(dim // num_heads * head_dim_ratio)
        self.head_dim = head_dim
        self.scale = head_dim ** -0.5
        self.fused_attn = use_fused_attn(experimental=True)

        self.qkv = nn.Conv2d(dim, head_dim * num_heads * 3, 1, stride=1, padding=0, bias=False)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Conv2d(self.head_dim * self.num_heads, dim, 1, stride=1, padding=0, bias=False)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, C, H, W = x.shape
        x = self.qkv(x).reshape(B, 3, self.num_heads, self.head_dim, -1).permute(1, 0, 2, 4, 3)
        q, k, v = x.unbind(0)

        if self.fused_attn:
            x = torch.nn.functional.scaled_dot_product_attention(
                q.contiguous(), k.contiguous(), v.contiguous(),
                dropout_p=self.attn_drop.p,
            )
        else:
            attn = (q @ k.transpose(-2, -1)) * self.scale
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.permute(0, 1, 3, 2).reshape(B, -1, H, W)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(
            self,
            dim,
            num_heads,
            head_dim_ratio=1.,
            mlp_ratio=4.,
            proj_drop=0.,
            attn_drop=0.,
            drop_path=0.,
            act_layer=nn.GELU,
            norm_layer=LayerNorm2d,
            group=8,
            attn_disabled=False,
            spatial_conv=False,
    ):
        super().__init__()
        self.spatial_conv = spatial_conv
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        if attn_disabled:
            self.norm1 = None
            self.attn = None
        else:
            self.norm1 = norm_layer(dim)
            self.attn = Attention(
                dim,
                num_heads=num_heads,
                head_dim_ratio=head_dim_ratio,
                attn_drop=attn_drop,
                proj_drop=proj_drop,
            )

        self.norm2 = norm_layer(dim)
        self.mlp = SpatialMlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
            group=group,
            spatial_conv=spatial_conv,
        )

    def forward(self, x):
        if self.attn is not None:
            x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class Visformer(nn.Module):
    def __init__(
            self,
            img_size=224,
            patch_size=16,
            in_chans=3,
            num_classes=1000,
            init_channels=32,
            embed_dim=384,
            depth=12,
            num_heads=6,
            mlp_ratio=4.,
            drop_rate=0.,
            pos_drop_rate=0.,
            proj_drop_rate=0.,
            attn_drop_rate=0.,
            drop_path_rate=0.,
            norm_layer=LayerNorm2d,
            attn_stage='111',
            use_pos_embed=True,
            spatial_conv='111',
            vit_stem=False,
            group=8,
            global_pool='avg',
            conv_init=False,
            embed_norm=None,
    ):
        super().__init__()
        img_size = to_2tuple(img_size)
        self.num_classes = num_classes
        self.embed_dim = embed_dim
        self.init_channels = init_channels
        self.img_size = img_size
        self.vit_stem = vit_stem
        self.conv_init = conv_init
        if isinstance(depth, (list, tuple)):
            self.stage_num1, self.stage_num2, self.stage_num3 = depth
            depth = sum(depth)
        else:
            self.stage_num1 = self.stage_num3 = depth // 3
            self.stage_num2 = depth - self.stage_num1 - self.stage_num3
        self.use_pos_embed = use_pos_embed
        self.grad_checkpointing = False

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        # stage 1
        if self.vit_stem:
            self.stem = None
            self.patch_embed1 = PatchEmbed(
                img_size=img_size,
                patch_size=patch_size,
                in_chans=in_chans,
                embed_dim=embed_dim,
                norm_layer=embed_norm,
                flatten=False,
            )
            img_size = [x // patch_size for x in img_size]
        else:
            if self.init_channels is None:
                self.stem = None
                self.patch_embed1 = PatchEmbed(
                    img_size=img_size,
                    patch_size=patch_size // 2,
                    in_chans=in_chans,
                    embed_dim=embed_dim // 2,
                    norm_layer=embed_norm,
                    flatten=False,
                )
                img_size = [x // (patch_size // 2) for x in img_size]
            else:
                self.stem = nn.Sequential(
                    nn.Conv2d(in_chans, self.init_channels, 7, stride=2, padding=3, bias=False),
                    nn.BatchNorm2d(self.init_channels),
                    nn.ReLU(inplace=True)
                )
                img_size = [x // 2 for x in img_size]
                self.patch_embed1 = PatchEmbed(
                    img_size=img_size,
                    patch_size=patch_size // 4,
                    in_chans=self.init_channels,
                    embed_dim=embed_dim // 2,
                    norm_layer=embed_norm,
                    flatten=False,
                )
                img_size = [x // (patch_size // 4) for x in img_size]

        if self.use_pos_embed:
            if self.vit_stem:
                self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim, *img_size))
            else:
                self.pos_embed1 = nn.Parameter(torch.zeros(1, embed_dim//2, *img_size))
            self.pos_drop = nn.Dropout(p=pos_drop_rate)
        else:
            self.pos_embed1 = None

        self.stage1 = nn.Sequential(*[
            Block(
                dim=embed_dim//2,
                num_heads=num_heads,
                head_dim_ratio=0.5,
                mlp_ratio=mlp_ratio,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                group=group,
                attn_disabled=(attn_stage[0] == '0'),
                spatial_conv=(spatial_conv[0] == '1'),
            )
            for i in range(self.stage_num1)
        ])

        # stage2
        if not self.vit_stem:
            self.patch_embed2 = PatchEmbed(
                img_size=img_size,
                patch_size=patch_size // 8,
                in_chans=embed_dim // 2,
                embed_dim=embed_dim,
                norm_layer=embed_norm,
                flatten=False,
            )
            img_size = [x // (patch_size // 8) for x in img_size]
            if self.use_pos_embed:
                self.pos_embed2 = nn.Parameter(torch.zeros(1, embed_dim, *img_size))
            else:
                self.pos_embed2 = None
        else:
            self.patch_embed2 = None
        self.stage2 = nn.Sequential(*[
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                head_dim_ratio=1.0,
                mlp_ratio=mlp_ratio,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                group=group,
                attn_disabled=(attn_stage[1] == '0'),
                spatial_conv=(spatial_conv[1] == '1'),
            )
            for i in range(self.stage_num1, self.stage_num1+self.stage_num2)
        ])

        # stage 3
        if not self.vit_stem:
            self.patch_embed3 = PatchEmbed(
                img_size=img_size,
                patch_size=patch_size // 8,
                in_chans=embed_dim,
                embed_dim=embed_dim * 2,
                norm_layer=embed_norm,
                flatten=False,
            )
            img_size = [x // (patch_size // 8) for x in img_size]
            if self.use_pos_embed:
                self.pos_embed3 = nn.Parameter(torch.zeros(1, embed_dim*2, *img_size))
            else:
                self.pos_embed3 = None
        else:
            self.patch_embed3 = None
        self.stage3 = nn.Sequential(*[
            Block(
                dim=embed_dim * 2,
                num_heads=num_heads,
                head_dim_ratio=1.0,
                mlp_ratio=mlp_ratio,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                group=group,
                attn_disabled=(attn_stage[2] == '0'),
                spatial_conv=(spatial_conv[2] == '1'),
            )
            for i in range(self.stage_num1+self.stage_num2, depth)
        ])

        self.num_features = embed_dim if self.vit_stem else embed_dim * 2
        self.norm = norm_layer(self.num_features)

        # head
        global_pool, head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)
        self.global_pool = global_pool
        self.head_drop = nn.Dropout(drop_rate)
        self.head = head

        # weights init
        if self.use_pos_embed:
            trunc_normal_(self.pos_embed1, std=0.02)
            if not self.vit_stem:
                trunc_normal_(self.pos_embed2, std=0.02)
                trunc_normal_(self.pos_embed3, std=0.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.Conv2d):
            if self.conv_init:
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            else:
                trunc_normal_(m.weight, std=0.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0.)

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        return dict(
            stem=r'^patch_embed1|pos_embed1|stem',  # stem and embed
            blocks=[
                (r'^stage(\d+)\.(\d+)' if coarse else r'^stage(\d+)\.(\d+)', None),
                (r'^(?:patch_embed|pos_embed)(\d+)', (0,)),
                (r'^norm', (99999,))
            ]
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.num_classes = num_classes
        self.global_pool, self.head = create_classifier(self.num_features, self.num_classes, pool_type=global_pool)

    def forward_features(self, x):
        if self.stem is not None:
            x = self.stem(x)

        # stage 1
        x = self.patch_embed1(x)
        if self.pos_embed1 is not None:
            x = self.pos_drop(x + self.pos_embed1)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.stage1, x)
        else:
            x = self.stage1(x)

        # stage 2
        if self.patch_embed2 is not None:
            x = self.patch_embed2(x)
            if self.pos_embed2 is not None:
                x = self.pos_drop(x + self.pos_embed2)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.stage2, x)
        else:
            x = self.stage2(x)

        # stage3
        if self.patch_embed3 is not None:
            x = self.patch_embed3(x)
            if self.pos_embed3 is not None:
                x = self.pos_drop(x + self.pos_embed3)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.stage3, x)
        else:
            x = self.stage3(x)

        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        x = self.global_pool(x)
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_visformer(variant, pretrained=False, default_cfg=None, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')
    model = build_model_with_cfg(Visformer, variant, pretrained, **kwargs)
    return model


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'stem.0', 'classifier': 'head',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'visformer_tiny.in1k': _cfg(hf_hub_id='timm/'),
    'visformer_small.in1k': _cfg(hf_hub_id='timm/'),
})


@register_model
def visformer_tiny(pretrained=False, **kwargs) -> Visformer:
    model_cfg = dict(
        init_channels=16, embed_dim=192, depth=(7, 4, 4), num_heads=3, mlp_ratio=4., group=8,
        attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True,
        embed_norm=nn.BatchNorm2d)
    model = _create_visformer('visformer_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model


@register_model
def visformer_small(pretrained=False, **kwargs) -> Visformer:
    model_cfg = dict(
        init_channels=32, embed_dim=384, depth=(7, 4, 4), num_heads=6, mlp_ratio=4., group=8,
        attn_stage='011', spatial_conv='100', norm_layer=nn.BatchNorm2d, conv_init=True,
        embed_norm=nn.BatchNorm2d)
    model = _create_visformer('visformer_small', pretrained=pretrained, **dict(model_cfg, **kwargs))
    return model


# @register_model
# def visformer_net1(pretrained=False, **kwargs):
#     model = Visformer(
#         init_channels=None, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111',
#         spatial_conv='000', vit_stem=True, conv_init=True, **kwargs)
#     model.default_cfg = _cfg()
#     return model
#
#
# @register_model
# def visformer_net2(pretrained=False, **kwargs):
#     model = Visformer(
#         init_channels=32, embed_dim=384, depth=(0, 12, 0), num_heads=6, mlp_ratio=4., attn_stage='111',
#         spatial_conv='000', vit_stem=False, conv_init=True, **kwargs)
#     model.default_cfg = _cfg()
#     return model
#
#
# @register_model
# def visformer_net3(pretrained=False, **kwargs):
#     model = Visformer(
#         init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111',
#         spatial_conv='000', vit_stem=False, conv_init=True, **kwargs)
#     model.default_cfg = _cfg()
#     return model
#
#
# @register_model
# def visformer_net4(pretrained=False, **kwargs):
#     model = Visformer(
#         init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., attn_stage='111',
#         spatial_conv='000', vit_stem=False, conv_init=True, **kwargs)
#     model.default_cfg = _cfg()
#     return model
#
#
# @register_model
# def visformer_net5(pretrained=False, **kwargs):
#     model = Visformer(
#         init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111',
#         spatial_conv='111', vit_stem=False, conv_init=True, **kwargs)
#     model.default_cfg = _cfg()
#     return model
#
#
# @register_model
# def visformer_net6(pretrained=False, **kwargs):
#     model = Visformer(
#         init_channels=32, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4., group=1, attn_stage='111',
#         pos_embed=False, spatial_conv='111', conv_init=True, **kwargs)
#     model.default_cfg = _cfg()
#     return model
#
#
# @register_model
# def visformer_net7(pretrained=False, **kwargs):
#     model = Visformer(
#         init_channels=32, embed_dim=384, depth=(6, 7, 7), num_heads=6, group=1, attn_stage='000',
#         pos_embed=False, spatial_conv='111', conv_init=True, **kwargs)
#     model.default_cfg = _cfg()
#     return model